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Abstract— We present a novel 3D reconstruction-based
SLAM (Simultaneous Localization and Mapping) approach for
robots that leverage multimodal sensory input data, including
a camera and a 2D lidar. By integrating these inputs with
the gaussian splatting technique, our method significantly
enhances performance over traditional SLAM approaches.
Traditional SLAM techniques often struggle with the limi-
tations of monocular vision and fail to accurately map and
locate objects in dynamic and cluttered environments. Purely
relying on camera to localize the robot and map creation is
challenging in the presence of dynamic obstacles in the scene.
To address this, we proposed a multimodal sensor fusion-
based 3D reconstruction. Our approach employs lidar-based
localization to achieve precise positioning of both the camera
and the robot, while utilizing the gaussian splatting technique
for robust environmental mapping and 3D reconstruction. This
approach is robust to dynamic obstacles in the scene. We
have conducted extensive experiments in various real-world
and simulated environments, demonstrating that our method
not only outperforms traditional monocular SLAM approaches
but also achieves higher accuracy in terms of localization
and constructed map. Our results demonstrate substantial
improvements in 3D reconstruction for mobile robots, achieving
reduced computational load, higher FPS and enhanced scaling
accuracy.

I. INTRODUCTION

Rapid advancements in robotics and autonomous systems
have revolutionized industries and daily life, enhancing effi-
ciency, safety, and productivity. From autonomous vehicles
and robotic manufacturing to smart surveillance and home
automation, robots are increasingly performing complex
tasks in dynamic environments [1]. A critical capability
underpinning these applications is the ability of robots to
perceive, understand, and interact with their surroundings in
three dimensions. This capability is facilitated by Simulta-
neous Localization and Mapping (SLAM), a technology that

This work was not supported by any organization
*2 and 3 are equally contributing authors
1Ajay Kumar Sandula is a PhD student at the Department of Cyber-

Physical Systems, Indian Institute of Science, Bangalore, Karnataka,
560012, India. ajaykumars@iisc.ac.in

2Shriram Damodaran is an undergraduate student at Dr B
R Ambedkar National Institute of Technology, Jalandhar, India.
dshriram27@gmail.com

3Suhas Nagaraj is a master’s student at the University of Maryland,
College Park, United States. suhas99@umd.edu

4Debasish Ghose is a professor with the Robert Bosch Centre for
Cyber-Physical Systems and the Department of Aerospace Engineer-
ing, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
dghose@iisc.ac.in

5Pradipta Biswas is an associate professor with the Robert Bosch Centre
for Cyber-Physical Systems and the Department of Design and Manufac-
turing, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
pradipta@iisc.ac.in

Fig. 1: Real-time 3D reconstruction with and without lidar-
camera integration, showing unscaled 3D maps without lidar
integration.

allows robots to build a map of an unknown environment
while simultaneously determining their location within it.

3D reconstruction and Semantic SLAM are pivotal in
various applications, including robotics, augmented/virtual
reality (AR/VR), and autonomous driving [2], [3]. It enables
a robot to create a detailed 3D map of its environment and
understand the semantic context of the objects it encoun-
ters. However, conventional SLAM techniques often rely
on monocular or RGB-D cameras, which can struggle with
limitations such as the inability to handle dynamic obstacles,
occlusions, or environments with less features. This makes
them prone to inaccuracies in both mapping and localization,
particularly in cluttered and dynamic settings.

Monocular vision-based SLAM often fails in environments
[4] with accurate scale (as observed in Figure 1), poor
lighting, or low texture, leading to inaccurate or incomplete
reconstructions. While lidar-based SLAM can provide pre-
cise depth measurements and localization, it lacks the rich
color and texture information needed for detailed 3D re-
construction and semantic understanding. Additionally, pure
lidar systems can struggle with small or transparent objects
that do not reflect laser beams well. The integration of visual
and lidar data for SLAM aims to leverage the strengths
of both sensors, combining the precise depth measurements
of lidar with the detailed visual information of cameras.
However, existing multimodal fusion approaches still face
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challenges in real-time processing, accurate data alignment,
and robustness in dynamic environments.

We propose a novel 3D reconstruction approach using
multimodal sensor fusion of camera and lidar data with
a gaussian splatting [5] technique. By combining visual
data for texture and color with lidar’s depth precision, our
method creates a unified 3D representation that generates ac-
curate, high-fidelity maps in real time. The gaussian splatting
technique provides a smooth and computationally efficient
representation, enhancing SLAM performance in complex
environments. Our architecture overcomes the limitations of
traditional SLAM by enhancing mapping accuracy, reducing
computational load by 34%, and increasing FPS, resulting in
more efficient and responsive 3D reconstruction.

II. BACKGROUND

SLAM has evolved from basic geometric mapping with
Kalman and particle filters [6], [7] to advanced Visual
SLAM [8]–[14] using monocular, stereo, and RGB-D cam-
eras. Recent innovations include event-based SLAM [15]–
[19] for high-motion environments and Semantic SLAM,
which integrates object recognition to enhance environmental
understanding in dynamic settings. Methods like DS-SLAM
[20], DynaSLAM [21], YOLO-SLAM [22], PSPNet-SLAM
[23] and SGS-SLAM [24] combine semantic segmentation
with traditional SLAM, improving accuracy in cluttered en-
vironments. A notable advancement is MonoGS [25], which
uses monocular cameras and Gaussian splatting for real-
time 3D reconstruction. Instead of traditional point clouds or
voxel grids, MonoGS employs a 3D Gaussian representation,
differentiable splatting, adaptive density control, and camera
tracking, significantly advancing monocular visual SLAM
capabilities.

At its core, gaussian representation of the environment
utilizes 3D gaussians characterized by their position µ,
anisotropic covariance Σ, which defines their size and ori-
entation in 3D space, and opacity α. The 3D gaussian is
mathematically defined as:

G(x) = e−
1
2 (x−µ)⊤Σ−1(x−µ) (1)

This representation offers several advantages over tradi-
tional methods like point clouds and voxel grids, making it
ideal for visual SLAM and 3D reconstruction. It provides a
smooth, continuous, and differentiable volumetric function,
enabling efficient gradient computation and real-time updates
in SLAM. The gaussian splatting approach uses compact
memory, allowing for scalable representation of complex
geometries without the high memory overhead of voxel grids.
The fast, differentiable rasterization process enables efficient
rendering of 3D gaussians by projecting these 3D elements
onto a 2D image plane. The projection of the 3D gaussian to
the 2D plane is given by the transformation of the covariance
matrix Σ into image space as follows:

Σ′ = JWΣW⊤J⊤ (2)

where W represents the viewing transformation and J is
the Jacobian of the affine approximation of the projective
transformation. This projection allows for efficient opti-
mization of scene representations in real time. The camera
tracking approach in the gaussian Splatting SLAM system
involves direct optimization of camera poses against 3D
gaussians, enabling robust tracking through a differentiable
rendering process that updates both the camera trajectory
and scene geometry simultaneously. The system minimizes
the photometric residual error Epho, defined as: Epho =∥∥I(G,TCW )− Ī

∥∥
1
, where I(G,TCW ) renders the gaussians

G from the camera pose TCW , and Ī is the observed
image. Additionally, when depth observations are avail-
able, the system minimizes the geometric residual Egeo:
Egeo =

∥∥D(G,TCW )− D̄
∥∥
1
, where D(G,TCW ) is the

depth rasterization and D̄ is the observed depth. This system
utilizes an analytic Jacobian on the Lie group of the camera
pose, isotropic gaussian shape regularization, and dynamic
gaussian allocation and pruning to maintain an accurate and
efficient scene representation during incremental SLAM. The
proposed camera tracking uses gradient descent to optimize
the camera pose directly against observed 3D Gaussians. It
iteratively adjusts the camera’s position and orientation by
minimizing the reprojection error between the Gaussians and
their expected positions in the image plane, ensuring accurate
alignment of the camera trajectory with the dynamic scene
during SLAM.

Relying solely on RGB data for depth estimation is
computationally demanding, reducing FPS and affecting real-
time performance. To enhance efficiency and accuracy, we
integrate monocular depth estimation methods like UniDepth
[26] and Depth Anything [27]. Additionally, the integration
of 2D lidar data corrects scale misalignments, ensuring the
reconstructed 3D environment aligns with real-world dimen-
sions, thereby improving SLAM accuracy and navigation
reliability.

III. PROBLEM STATEMENT

This work aims to achieve precise 3D surface recon-
struction using a mobile robot equipped with a monocular
camera and a 2D lidar. The camera provides 2D images
with color, texture, and intrinsic parameters, while the lidar
delivers accurate depth measurements of the environment.
By fusing these complementary data sources, we aim to
create a detailed 3D map that captures both the geometry
and appearance of the environment.

Achieving real-time 3D surface reconstruction that aligns
accurately with real-world dimensions is a significant chal-
lenge in mobile robotics and SLAM applications. Traditional
SLAM methods, denoted as S, rely heavily on monocular
vision data Ic and intrinsic parameters K = [fx, fy, cx, cy]
to estimate depth di for each pixel i within the image.
However, these approaches often fail to maintain accurate
scaling due to the inherent limitations of monocular depth
estimation, such as ambiguities in scale and sensitivity to
dynamic changes within the environment. This results in 3D
reconstructions, Mest, that are not correctly scaled to the
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Fig. 2: Proposed architecture for real time 3D reconstruction with camera and lidar integration

real world Mreal, compromising their use in navigation and
interaction tasks.

The input to our proposed SLAM system consists of
camera images Ic, intrinsic camera parameters K, and lidar
scan data L = {lj}, where lj represents a range measurement
at a specific angle θj . Our goal is to compute an accurate 3D
reconstruction M̂ that closely matches the true environment
Mreal while simultaneously determining the robot’s pose
TCW . The challenge with existing methods that rely solely
on RGB data is that they use computationally intensive
processes such as gradient descent for pose optimization
TCW , which can severely impact the system’s real-time
performance due to the high computational load and reduced
frames per second (FPS).

To address these limitations, we propose a multimodal
sensor fusion approach that integrates advanced monocular
depth estimation techniques like UniDepth [26] and Depth
Anything [27] to enhance depth accuracy while maintaining
computational efficiency. Additionally, by incorporating lidar
data L, we adjust the scale of the reconstruction using a
scaling factor αi =

di

lj
, where di is the depth estimated from

the camera and lj is the corresponding lidar measurement.
This scaling factor refines the depth map, ensuring that the
reconstructed 3D points Pi = [xi, yi, zi] align correctly
with real-world dimensions. By employing a clustering-
based approach to remove outliers in the scaling factors, we
improve the robustness of the depth adjustment, resulting in
a more accurate and reliable 3D surface reconstruction M̂.
This integrated sensor fusion strategy significantly enhances
SLAM performance, providing precise and reliable naviga-
tion capabilities in both static and dynamic environments,
and making the system highly adaptable for real-world
robotic applications.

IV. METHODOLOGY

The proposed architecture leverages multimodal sensory
inputs from a 2D lidar and a monocular camera mounted
on a mobile robot to achieve precise, real-time 3D recon-
struction of the environment. The data flow across differ-
ent stages involves key modules such as 2D LiDAR-based

Localization, Monocular Depth Estimation, Sensor Fusion
& Point Cloud Generation, Differential Rasterization, and
Gaussian Splatting. This integration of camera and LiDAR
data enhances SLAM performance, as illustrated in Figure
2, which provides a comprehensive overview of how each
module interacts within the system.

A. System Workflow

Starting with the mobile robot, the 2D lidar provides
precise distance measurements L that are used by the 2D
lidar based localization module. We used the cartographer
[28] technique, well-known for its robust localization and
mapping capabilities. The cartographer uses lidar scans
to generate 2D maps and estimates the pose of camera
TCW, effectively anchoring the overall mapping process by
providing accurate localization information. Simultaneously,
the monocular camera captures RGB images Ic, which,
along with the intrinsic parameters K, serve as inputs for
monocular depth estimation models like UniDepth or Depth
Anything. These models output an initial depth map D,
which represents the depth information derived solely from
visual data.

However, monocular depth estimation often suffers from
scale ambiguity and inaccuracies in real-world dimension
representation. To mitigate these issues, the Sensor Fusion
and Point Cloud Generation module combines the depth map
D with the lidar measurements L. This fusion process adjusts
the scale of the depth map by computing a scaling factor α
that aligns the camera-derived depth values with lidar data,
producing a scaled depth map α ·D. This scaled depth map
is then used to generate a point cloud, which accurately
represents the spatial layout of the environment.

The generated point cloud is subsequently passed to the
gaussian Splatting module, where it undergoes further re-
finement and 3D mapping. gaussian splatting, a technique
that represents the scene with continuous gaussian functions
rather than discrete points, enables the creation of high-
fidelity 3D reconstructions M̂. The output from gaussian
Splatting feeds into the Differential Rasterization module,
which dynamically optimizes the scene by adjusting both
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Fig. 3: Lidar points projected onto the camera image, demon-
strating depth alignment for 3D mapping.

camera poses and scene geometry. This feedback loop en-
sures continuous refinement of the 3D map M̂, integrating
new sensory data and maintaining accurate and up-to-date
representations of the environment.

Overall, this architecture combines the complementary
strengths of lidar and monocular vision, addressing the
limitations of each to produce a robust, scalable, and accurate
3D reconstruction. By effectively fusing sensory data and
leveraging advanced techniques like gaussian splatting, the
system enhances SLAM performance, providing a reliable
framework for navigation and interaction in dynamic and
complex environments.

B. Camera-lidar Integration

The integration of camera and lidar data enhances the
accuracy and scale alignment of 3D surface reconstructions
in SLAM systems. This process involves transforming lidar
scan data into the camera frame, projecting the transformed
points onto the image plane, and calculating orthogonal
distances relative to the camera as shown in the Figure 3
By combining these data sources, our system produces a 3D
map M̂ that accurately reflects real-world dimensions, over-
coming common scaling limitations of monocular SLAM.

The lidar provides radial distance measurements L =
{lj} at angles θj , initially expressed in polar coordinates.
These measurements are first transformed into cartesian
coordinates through the mapping function fpolar→cart, defined
as: fpolar→cart : (lj , θj) 7→ Pl = [xl yl 0 1]⊤, where
(xl, yl) are the Cartesian coordinates of the lidar point. Next,
these points are mapped into the camera frame using the
transformation matrix Tlidar→camera via the function ftransform:
ftransform : Pl 7→ Pc = Tlidar→camera · Pl = [xc yc zc 1]⊤,,
where Pc represents the transformed coordinates in the
camera frame. The z-component, zc, provides the orthogonal
distance d⊥ = zc from the camera to each point. The
transformed 3D points are then projected onto the 2D image
plane using the camera’s intrinsic matrix K through the
mapping function fproj : Pc 7→ Pimage = K[xc yc zc]

⊤ =
[fxxc+cxzc fyyc+cyzc zc]

⊤, which outputs the 2D projec-
tion of the lidar points in the camera’s image space. Finally,
the pixel coordinates (ui, vi) are obtained by normalizing

Fig. 4: Real-time 3D reconstruction in indoor environments
using a real robot

the projected coordinates via the function fnorm:Pimage 7→
(ui, vi) =

(
fxxc+cxzc

zc
,
fyyc+cyzc

zc

)
.

This sequence of transformations ensures that the lidar
points are accurately aligned with the camera’s perspective,
enhancing the overall accuracy of the 3D reconstruction
M̂. To accurately scale the camera-derived depth map
D : (uj , vj) → dj which is obtained from the UNIDepth
or Depth AnyThing AI models, lidar measurements L =
(uj , vj , zj) are used, where (uj , vj) are pixel coordinates and
zj are the corresponding lidar depths in camera coordinate
frame. For each (uj , vj), the corresponding camera depth
dj is extracted, forming the mapping function D = dj .
Valid pairs are filtered to avoid errors, and a scale factor
α =

∑
j lj∑
j dj

is computed, aligning the camera depth values
with the lidar measurements. The scaled depth map is then
Dscaled = α · D, correcting scale discrepancies to ensure
that the 3D reconstruction M̂ matches real-world dimen-
sions. This approach mitigates the inherent scale ambiguities
of monocular depth estimation, resulting in a robust and
scalable SLAM framework capable of precise navigation in
dynamic environments as shown in the Figure 4.

V. RESULTS

In this study, we developed four distinct approaches by
varying two key parameters: the depth estimation model
and the localization method. The first parameter, the depth
estimation model, involved two advanced monocular depth
estimation techniques: UniDepth and Depth Anything. The
second parameter revolves around the localization method,
which we varied between camera-based (explained in Section
II) and lidar-based localization (explained in Section IV).
We benchmarked our proposed approaches against MonoGS,
a state-of-the-art monocular SLAM method for 3D recon-
struction. Additionally, we integrated MonoGS with lidar-
based localization, excluding any depth estimation models,
to provide a better comparative baseline with our proposed
architectures. To evaluate the proposed approaches, we set up
a ROS2-Gazebo simulation environment featuring a mobile
robot equipped with a monocular camera and a 2D lidar sen-
sor. The robot was deployed in a realistic house environment
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TABLE I: RMSE Values for Different Configurations with lidar and Non-lidar for position and orientation

Configuration X (m) Y (m) Z (m) Roll (rad) Pitch (rad) Yaw (rad) Position Orientation
UniDepth with lidar 0.0466 0.0491 0.1178 5.78e-05 5.178e-03 0.4195 0.0784 0.2422
UniDepth without lidar 3.0497 1.5722 0.9188 5.48e-05 5.178e-03 0.4142 2.0507 0.2392
Depth Anything with lidar 0.2643 0.1075 0.1040 5.68e-05 5.173e-03 0.7058 0.1753 0.4075
Depth Anything without lidar 5.2179 2.0217 0.3157 5.51e-05 5.179e-03 0.7337 3.2359 0.4236
MonoGS with lidar 0.0306 0.0452 0.1085 5.60e-05 5.179e-03 0.4514 0.0701 0.2606
MonoGS without lidar 3.4925 2.1109 0.8798 5.65e-05 5.178e-03 0.4231 2.4102 0.2443

Fig. 5: Location of robot as perceived by lidar integrated and
unintegrated monocular 3D SLAM

where it navigated to collect data streams from both sensors.
These recorded data streams were then used as consistent
inputs across all the pipelines mentioned above, ensuring
a fair and comprehensive benchmarking of our approaches
against each other and against the baseline methods.

TABLE II: Computational Load Comparison of Different
Configurations (i9-12th gen processor, RTX 4090 GPU)

Configuration Computational Load across all cores (%)
Depth Anything (DAT) with lidar 1305
Depth Anything (DAT) without lidar 1445
UniDepth with lidar 1024
UniDepth without lidar 1243
MonoGS with lidar 1343
MonoGS without lidar 1549

Key performance indicators (KPIs) such as computational
load, point cloud scaling accuracy, Frames Per Second (FPS),
and Root Mean Square Error (RMSE) values are crucial in
3D reconstruction of environments as they directly impact
the system’s efficiency, accuracy, and real-time capabilities.
We collected continuous sensory data streams and processed
them through each configuration of interest for 3D recon-
struction. Table I and the Figure 5 shows the RMSE errors
relative to the ground truth within the gazebo simulator.
Computational load determines the feasibility of deploying
the system in resource-constrained settings, while point cloud
scaling accuracy ensures that the reconstructed map aligns
with real-world dimensions, essential for precise navigation.
Table II shows the computational load details. In the Table
III, FPS measures the system’s responsiveness, affecting how
quickly it can update the environment model, and RMSE

Fig. 6: RMSE Comparison of Scaled vs. Unscaled Point
Clouds with Ground Truth lidar for UniDepth with lidar case

values of the Table IV highlight the accuracy improvements
achieved by integrating lidar data, ensuring that the recon-
structed 3D environment is reliable and suitable for real-
world robotic applications.

TABLE III: FPS Comparison among benchmarks

Configuration FPS
UniDepth with lidar 2.176
UniDepth without lidar 1.201
Depth Anything (DAT) with lidar 2.566
Depth Anything (DAT) without lidar 1.564
MonoGS with lidar 1.593
MonoGS without lidar 1.418

To evaluate the point cloud scaling accuracy, which reflects
the performance of the sensor fusion model, we compared
the averaged Root Mean Square Error (RMSE) between the
scaled and unscaled point clouds against the ground truth
lidar measurements as shown in the Figure 6. The scaled
point cloud results from integrating lidar measurements with
monocular depth estimation, providing an adjusted represen-
tation that aligns with real-world dimensions. Table IV has
the RMSE results for each configuration.

TABLE IV: RMSE Comparison of Scaled and Unscaled
Point Clouds with Ground Truth lidar Measurements

Configuration Avg RMSE (Scaled Z) Avg RMSE (Unscaled Z)
Depth Anything with lidar 0.5404 1.4588
UniDepth with lidar 0.3980 1.4600

VI. DISCUSSION

The results presented in this study demonstrate the effec-
tiveness of integrating lidar with monocular depth estimation
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models for enhancing the 3D reconstruction capabilities of
SLAM systems. By varying the depth estimation techniques
and localization methods, we evaluated four distinct configu-
rations and compared them against the established MonoGS
SLAM benchmark. The primary KPIs, including computa-
tional load, FPS, and RMSE values, provide critical insights
into the performance and applicability of each configuration
in real-world scenarios.

Performance Analysis of Depth Estimation Models:
The RMSE values presented in Table I highlight the sub-
stantial impact of incorporating lidar-based localization on
point cloud scaling accuracy. The configurations using lidar
consistently demonstrated lower RMSE values compared to
their non-lidar counterparts, particularly in position accuracy.
For instance, UniDepth with lidar achieved a significantly
lower RMSE for position (0.0784) compared to UniDepth
without lidar (2.0507), indicating that lidar integration effec-
tively mitigates scaling errors inherent in monocular depth
estimation methods. The consistency in orientation errors
across all configurations suggests that while lidar primarily
enhances spatial accuracy, it does not significantly alter the
orientation estimation.

Computational Load Considerations: Table II reveals
that configurations using lidar tend to have lower compu-
tational loads compared to those relying solely on camera-
based localization. For example, UniDepth with lidar exhib-
ited a computational load of 1024%, while the non-lidar vari-
ant consumed 1243%. This reduction is crucial for real-time
performance, as lower computational demands enable higher
responsiveness and faster data processing, which are essential
for applications requiring real-time 3D reconstruction. The
integration of lidar appears to streamline the localization
process, reducing the need for computationally intensive pose
optimization techniques typically required in purely vision-
based systems.

FPS Analysis and Real-Time Capabilities: As shown in
Table III, the FPS performance of lidar-integrated configu-
rations consistently outperforms those without lidar. Depth
Anything with lidar achieved the highest FPS (2.566),
demonstrating superior efficiency in processing sensory data
compared to its camera-only counterpart (1.564 FPS). This
finding underscores the advantage of lidar in enhancing
system responsiveness, making it more suitable for dynamic
environments where rapid updates to the 3D map are neces-
sary.

Impact on Scaling Accuracy: The RMSE comparisons
between scaled and unscaled point clouds, as detailed in
Table IV, further validate the benefits of lidar integration.
The scaled configurations (e.g., Depth Anything with lidar
and UniDepth with lidar) showed substantial reductions in
RMSE when compared to unscaled point clouds, emphasiz-
ing the critical role of lidar in correcting depth inaccuracies.
This adjustment not only improves the overall accuracy of
the 3D map but also ensures that the spatial data aligns
with real-world measurements, which is essential for precise
navigation and interaction in complex environments.

Benchmarking Against MonoGS: The results demon-

strate that while MonoGS serves as a robust benchmark, the
integration of lidar enhances both computational efficiency
and spatial accuracy, particularly in environments with com-
plex geometries and dynamic obstacles. The lower RMSE
values and computational load observed in the proposed
configurations suggest that integrating lidar with advanced
depth estimation models provides a more balanced and
scalable approach for real-time 3D reconstruction.

Practical Implications: The observed improvements in
scaling accuracy, computational efficiency, and real-time
performance have significant implications for SLAM appli-
cations in autonomous navigation, robotic manipulation, and
augmented reality. The reduction in computational load and
enhanced FPS make the proposed configurations suitable for
deployment in resource-constrained settings, such as mobile
robots operating in cluttered and dynamic environments. By
aligning the reconstructed 3D environment with real-world
dimensions, the integrated approach ensures reliable spa-
tial understanding, crucial for task execution and decision-
making in autonomous systems.

In summary, integrating lidar with monocular depth es-
timation enhances camera-only SLAM systems, offering a
robust, scalable solution for precise 3D reconstruction. Com-
bining advanced depth models with lidar-based localization
improves SLAM performance, paving the way for more
accurate and efficient autonomous systems.

VII. FUTURE WORK & CONCLUSION

The integration of lidar with monocular depth estimation
models, such as UniDepth and Depth Anything, significantly
enhances the accuracy and scalability of 3D reconstruction
in SLAM systems. Our results demonstrate that lidar-based
localization reduces scaling errors and improves spatial ac-
curacy compared to camera-only methods, as shown by the
lower RMSE values. The reduced computational load and
increased FPS in lidar-integrated configurations highlight
the importance of multimodal sensor fusion, particularly
in dynamic environments where rapid updates and effi-
cient processing are crucial. Benchmark comparisons with
MonoGS further validate that our approach offers superior
performance, especially in complex and cluttered settings.

Future work would aim to explore incorporating semantic
perception models to enhance the environmental understand-
ing of SLAM systems. Integrating advanced object detec-
tion and segmentation could provide valuable contextual
information, aiding in better decision-making and obstacle
avoidance. This direction aligns with the goal of developing
intelligent SLAM systems that not only reconstruct but also
interpret complex environments, enhancing their adaptability
and effectiveness in autonomous navigation and robotic
applications.
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