

Intelligent Inclusive Interaction Design (I³D) Lab

Different Target Prediction Algorithms for Automotive, HRI and VR Digital Twin

Pradipta Biswas, PhD (Cantab)

I³D

Associate Professor Indian Institute of Science

https://cambum.net/, pradipta@iisc.ac.in

² Short Bio

Associate Professor at Dept of Design and Manufacturing and Associate Faculty at Centre for Cyber Physical System, Indian Institute of Science

Vice Chairman ITU SG9, Co-Chairman of IRG AVA, Vice-Chairman at FG Smart TV at International Telecommunication Union (ITU)

Convenor of BIS (ISO) Panel on Metaverse

Member, UKRI International Development Peer Review College

PhD in Computer Science from Trinity College, University of Cambridge, UK

Senior Research Associate at Cambridge University Engineering Department and Governing Body Fellow at Wolfson College

[3]

Worked with Jaguar Land Rover, Technicolor, BAE Systems from 2010 – 16

• I3D Lab (2016) Pradipta Biswas

3

Major Funding Agencies

- Designing VR model of Gaganayan Crew Cabin funded through ISRO Human Space Flight Centre (₹ 38L)
- Metaverse related projects with Siemens, Germany (₹ 77L) and Collins Aerospace, USA (₹ 71L)
- Designing Advanced HMI for next generation fighter aircraft platforms funded through Aeronautical Development Agency (ADA) & ARDB, DRDO (₹ 2 Cr)
- Developing VR model of Office Spaces funded by British Telecom, UK (₹90L)
- Patented AR-based Interactive Head Up Display System with Forvia (Faurecia), France (₹60L)
 - Developed VR based Flight Simulator as part of IISc-**Hindustan** Aeronautical Ltd (HAL) Skill Development Centre (₹ 42L)
 - Facebook Responsible Innovation in AR/VR Award (\$75K)
 - **TCS Innovation Lab** Grant and PhD Fellowship (₹1 Cr) for Multiagent Robotics systems
 - Microsoft AI 4 Accessibility Grant Award (\$15K)

Department of Science and Technology & Dept. of Bio-Technology, Govt of India (₹75L)

BusinessLine IISc develops eye gaze-controlled robotic arm for those suffering from speech and motor impairment

One Darrise [Diragebara] (Ipitate Low Indy 10, 2020). Di Hishiel av Edy 16, 2020

To help those with Secere Speech and Motor Engainment (SSW); a research toem at the Centre for Product Design and Manufacturing (CPDV), Indian Inscitate of Science (IISc), has designed a robotic arm Cambridge From digital accessibility to space flight

radipta Biswas talks about how his research on digit ~cessibility led to work on India's space programme.

Graduated PhD Students

- Dr Gowdham Prabhakar (2016-20) has joined as Assistant Professor at IIT Kanpur after postdoc at UCL, UK
- 2. Dr Jeevithashree DV (2018-21) is working as a PostDoc at **Purdue University**, **USA**
- 3. Dr Somnath Arjun (2016-21) has joined as Senior Engineer at **Siemens**
- 4. Dr Vinay Krishna Sharma (2018-23) has joined as Senior Engineer at **Siemens**
- 5. Dr LRD Murthy (2017-23) has joined as TechLead at **Mercedes-Benz**
- 6. Dr Archana Hebbar (2018-23) is Senior Principal Scientist at **CSIR-NAL**
- 7. Dr Abhishek Mukhopadhyay (2018-23) is Manager Product Design at **Ashok Leyland**

I³D

An Eye Tracking Study of Manual Control of Spacecraft

GROUP CAPTAIN AJIT KRISHNAN

1

Robert Bosch Centre for Cyber Physical Systems

I³D

HoloLens Based Assembly Demonstration

Subin Raj, Bikram Karmakar, Gyanig Kumar, Harshitha, Abhishek Mukhopadhyay, Yash Sahoo, Amrit Chatterjee, Pradipta Biswas Indian Institute of Science, Bangalore, India | Collins Aerospace Systems Gaze Controlled Mixed Reality Robotics Applications for Children with SSMI

ent Inclusive Interaction Design (I³D) Lab

Dr Pradipta Biswas, PhD (Cantab) Associate Professor Indian Institute of Science https://cambum.net/

> DEPARTMENT OF DESIGN AND MANUFACTURING INDIAN INSTITUTE OF SCIENCE

I³D

5

- Rapid Aiming Movements
- Artificial Neural Network based Approach
 - Automotive and Aviation Use Cases
- Imitation Learning
 - Inverse Reinforcement Learning
 - Behaviour Cloning
 - XR Interaction and Human Robot Handover
- Interactive Digital Twin
 - Objective
 - Walking Trajectory Prediction
- Concluding Remarks

I³D

Rapid Aiming Movements

Quick

Accurate

Preprogrammed

Analysis of Rapid Aiming Movements

8

Prospective Applications

Analysing Trajectory

Algorithm – Neural Network

- For every change in position of pointer in screen
 - Calculate angle of movement
 - Calculate velocity of movement
 - Calculate acceleration of movement
- Run Neural Network with Angle, Velocity and Acceleration
- Check output
- If output predicts homing phase
 - Find direction of movement
 - Find nearest target from current location towards direction of movement

Classifier Result

Evaluation Criteria

- Availability: In how many pointing tasks the algorithm makes a successful prediction.
 - Accuracy: Percentage of correct prediction among all predictions
 - **Sensitivity**: How quickly an algorithm can detect intended target

Proposed Applications

- G. Prabhakar, A. Ramakrishnan, L. R. D Murthy, V. K. Sharma, M. Madan, S. Deshmukh and P. Biswas, Interactive Gaze & Finger controlled HUD for Cars, Journal on Multimodal User Interfaces, Springer, 2019
- P. Biswas, S. Deshmukh, G. Prabhakar, M. Modiksha, V. K. Sharma and A. Ramakrishnan, A System for Man-Machine Interaction in Vehicles, Indian Patent Application No.: 201941009219, PCT International Application No. PCT/IB2020/050253
- P. Biswas and P. Langdon, Mutimodal Target Prediction Model, ACM CHI 2014 Extended Abstract
- P. Biswas, and P. Langdon, Multimodal Intelligent Eye-Gaze Tracking System, International Journal of Human-Computer Interaction 31(4), Taylor & Francis, Print ISSN: 1044-7318

Learning from Demonstrations (LfD)

Inverse Reinforcement Learning (IRL)

IRL \rightarrow learn r under which expert demonstrations are optimal

 $s \rightarrow$ state

 $\mathcal{D} = \{\tau_i\}, i = 1, \dots, M$ be the expert dataset

 $f \rightarrow$ features, captures human preferences during the task.

 $\omega \rightarrow$ feature weights

 $r \rightarrow reward$

The likelihood of expert demonstrations:

$$P(\mathcal{D}|\omega) = \prod_{i=1}^{M} \frac{e^{r(\tau_i,\omega)}}{\sum_{\tau_i \in \mathcal{D}} e^{r(\tau_i,\omega)}} = \prod_{i=1}^{M} \frac{1}{Z} e^{r(\tau_i,\omega)}$$

Objective:

$$\omega^* = \underset{\omega}{\operatorname{argmax}} \frac{1}{M} log P(\mathcal{D}|\omega) = \underset{\omega}{\operatorname{argmax}} \frac{1}{M} \sum_{i=1}^{M} \{ log P(\tau_i|\omega) \}$$

Features: distance, velocity, acceleration and jerk

Algorithm 1 Target Prediction Input: Partial hand trajectory $\psi = \{s_1, ..., s_m\}$, Goal $G \in \mathbb{G}$, MDP = $\{S, A, T, \gamma, r_G\}$, $r_G \in R$. Output: Predicted goal G_{pred} 1: for G in G do 2: $r_G \leftarrow G$ 3: Initialize $V_G = 0$ 4: Update $V_G \leftarrow (r_G, S, A, T, \gamma)$, 5: $p(\psi|G) = exp[\{\sum_{i=2}^m r_G(s_i)\} + V_G(s_m) - V_G(s_1)]$ 6: $p(G|\psi) = \frac{p(\psi|G)p(G)}{\sum_{G \in G} p(\psi|G)p(G)}$ 7: end for 8: $G_{pred} \leftarrow max \ p(G|\psi)$

Future hand trajectory is obtained using $\pi_{G_{pred}}$

For multimodal prediction, prior p(G) is obtained from the gaze data

M Mitra, P Pati, VK Sharma, S Raj, PP Chakrabarti, P Biswas, Comparison of Target Prediction in VR and MR using Inverse Reinforcement Learning, ACM International Conference on Intelligent User Interfaces (IUI 23)

IRL Algorithms

Z is approximated by summation over all sample trajectories $\psi_m, {\rm m}=1,\ldots,{\rm K}$

$$Z \approx \sum_{m=1}^{K} e^{R(\psi_m, \omega)}$$

Objective:

$$L(\omega) = \frac{1}{M} \sum_{i=1}^{M} \left\{ R(\tau_i, \omega) - \log \sum_{m=1}^{K} e^{R(\psi_m^i, \omega)} \right\}$$
$$\nabla_{\omega} L = \frac{1}{M} \sum_{i=1}^{M} \{ f(\tau_i) - \tilde{f}(\psi_m^i, \omega) \}$$

Maximum Entropy Deep IRL (MEDIRL)

Reward *r* is estimated by a neural network: $r_{\omega}(s) = g(f(s), \omega)$ ω^* is obtained by backpropagating the gradient: $\frac{\partial L}{\partial \omega} = (\mu_D - E[\mu]) \frac{\partial g(f, \omega)}{\partial \omega}$

 $\mu_D \rightarrow$ State visitation frequency (SVF) obtained from expert dataset

 $E[\mu] \rightarrow Expected SVF$ from learned reward at each iteration

Approximate value iteration and policy propagation algorithm were used to estimate SVF

Algorithm 2	Target	Prediction	using	MEDIRL
-------------	--------	------------	-------	--------

1: function MEDIRL

2: **Input:** Expert dataset \mathfrak{D} , partial trajectory φ , MDP, features(), MEDIRL(), targetPred(), valueIteration(), goal G, prediction horizon Δt \triangleright Input parameters

I³D

- 3: $f \leftarrow \text{features}(\mathfrak{D}) \triangleright \text{Feature estimation}$
- 4: $r_{\omega} \leftarrow \text{MEDIRL}(\mathfrak{D}, MDP, G) \triangleright \text{Reward learning}$
- 5: $G_{MEDIRL} \leftarrow \text{targetPred}(r_{\omega}, \varphi) \triangleright \text{Intended target prediction}$
- 6: $\varphi(t + \Delta t) \leftarrow \text{valueIteration}(G_{pred,MEDIRL}) \triangleright$ Future trajectory prediction
- 7: return $G_{MEDIRL}, \varphi(t + \Delta t) \triangleright$ Return the result
- 8: end function

M Mitra, AA Patil, GVS Mothish, G Kumar, A Mukhopadhyay, Murthy LRD, PP Chakraborty, P Biswas, Multimodal Target Prediction for Rapid Human-Robot Interaction, ACM International Conference on Intelligent User Interfaces (IUI 24)

Target Prediction During Rapid-Aiming Movement

Target prediction during a pointing task in VR and MR

•Hand movement prediction using SMEIRL

Enhanced Human-Robot Collaboration with Intent Prediction using Deep Inverse Reinforcement Learning

Hand movement prediction using MEDIRL

Multimodal Target Prediction for Rapid Human-Robot Interaction

•Hand movement prediction using MEDIRL + eye gaze

Behavior Cloning: Feature-based Bayesian Interaction Primitives (FBIP)

IRL accurate but slow

Hand motion representation with time-dependent basis functions and weights:

$$f(t) = \sum_{i=1}^{d} exp\left(-\frac{\left(f(t) - \mu_{i}\right)^{2}}{2\sigma_{i}^{2}}\right)\omega_{i} + \epsilon(t)$$

Basis matrix:

$$\Phi = \begin{bmatrix} \phi_1(\mu_1) & . & . & \phi_1(\mu_{i=d}) \\ . & . & . \\ . & . & . \\ \phi_{i=d}(\mu_1) & . & . & \phi_{i=d}(\mu_{i=d}) \end{bmatrix}$$

Objective:

$$\omega^{*} = \operatorname*{arg\,max}_{\omega} \log\left(p\left(\varphi|\omega\right)\right)$$

 ω^* was obtained using EKF with state vector as the weights of the basis function. Future hand trajectory:

$$\varphi\left(t + \Delta t\right) = \Phi\left(t + \Delta t\right)^{T} \omega^{*}\left(t\right)$$

I³D

Algorithm 1 Target Prediction using FBIP

1: function FBIP					
2: Input: Expert dataset \mathfrak{D} , partial trajectory φ , fea-					
tures(), gaussianRBF(), EKF(), predGoal(), prediction					
horizon Δt \triangleright Input parameters					
3: $f \leftarrow \text{features}(\mathfrak{D}) \triangleright \text{Feature estimation}$					
4: $\Phi \leftarrow \text{gaussianRBF}(f) \triangleright \text{Basis matrix formulation}$					
5: $\omega^* \leftarrow \text{EKF}(\Phi, \varphi) \triangleright \text{Optimal state vector}$					
6: $\varphi(t + \Delta t) \leftarrow \Phi(t + \Delta t)^T \omega^*(t) \triangleright$ Future trajectory					
prediction					
7: $G_{FBIP} \leftarrow \text{predGoal}(\varphi(t + \Delta t)) \triangleright \text{Intended target}$					
prediction					
8: return $G_{FBIP}, \varphi(t + \Delta t) $ \triangleright Return the result					
9: end function					

Fast and Accurate: Rapid Human-Robot Handover for Collaborative Assembly and Disassembly

M Mitra, G Kumar, PP Chakraborty, P Biswas, Enhanced Human-Robot Collaboration with Intent Prediction using Deep Inverse Reinforcement Learning, IEEE International Conference on Robotics and Automation (ICRA 24)

Team

- Prof Pradipta Biswas, IISc PI (+ research students)
- Dr Anasol Pena-Rios, BT Research & Networks Strategy

Interactive Digital Twins

• Shakti Srivastava, BTIRC Technical Delivery

Interactive Digital Twins PoC

Office-based Workplaces

Solutions to Key Challenges

Plan an effective workplace strategy, identifying workflows and considering employees' health, safety and welfare

AR Guided

Navigation

Special Workflows (e.g., Social Distancing Analysis)

Our Scalable Solution

Privacy-by-design approach

Anonymised real-time person and posture detection

Energy consumption estimation using AI

- Remote asset monitoring
- Real time alerts as per set up thresholds

AI-based real-time occupancy insights

• Insights into usage and movement in different size facilities

Low-cost devices

Cameras & sensors

Workflow tracking

- Real-time activity mapping between physical and virtual spaces
- Occupancy monitoring
- Special workflows (auditing usage of personal protective equipment (PPE) in specific areas)

Simulation capabilities

- Optimisation and planning using a 3D virtual reality replica of the physical space
- Standard and special scenarios (e.g., social distancing and reduced office capacity)

Stakeholder

BT India Workplace Team

BT Group General | 22

Benefits

Optimised space management and asset utilisation

Provide detailed insights collecting and visualising (near) real-time data

Cost reductions and rebalancing

Increase operational efficiency

eObject Component Tools ViitorCloud Window Help

🖾 🛞 🗶 🕢 Pivot @Global 巷

• Scale .

x1080)

► II ►I

E

standing

ttina

09326171875,1074.1474609375,1,p1,554.9268951416016,396.0365295410156,0

Particle filter overview

Data collection

- Obtained the human trajectory points using computer vision
- Camera placed at a static position and participants walked naturally from source to destination
- Cameras placed at various positions and heights (1.5m to 2.4m) to capture diverse perspectives. Different camera angles including top view, angled view and side view are captured.
- Object detection model processed frames at 7 to 8 fps
- Length of the path: 6.6 meters (maximum length) with approximately 80-100 points (depends on the path length)
- Number of participants: 14 participants (5.7ft average height)
- Average steps required from source to destination: (11/8/6/4 steps depends on destination location)
- Percentage of partial trajectory: 50%, 70% and 80%
- **Destination points:** Predefined **nine locations** as destination points
- Participants were asked to walk straight with minor turns
- Number of trajectory : 227 trajectories

Overall particle filter working

60% of actual trajectory

Prediction shown in green dots

Implementation

• Camera Integration:

- Object detection model to detect users
- Coordinate values are sent to particle filter algorithm
- Particles are uniformly distributed through out the area
- Each particle represents possible state of the user
- State Representation:
 - Defining a state vector to include parameters such as position (x and y), velocity and acceleration
 - Velocity and acceleration are obtained from coordinate profile/data
- Motion model:
 - To predict future state of each particle "Motion model" is implemented
 - Our motion model consists of velocity and acceleration to simulate the human motion

PF test area

Simulations – Matlab & Python				400 - 600 - 800 -			
			1000 - 250 500 750 1000 1250 1500 1750 Trajectory Tracking 1000 - 0 250 500 750 1000 1250 1500 1750 Trajectory Tracking 000 - 0 701 Trajectory Partial Trajectory Estimated Trajectory Estimated Trajectory Estimated Trajectory Estimated Trajectory Estimated Trajectory 000 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
Number of particles	50% Partial Trajectory	70% Partial Trajectory	90% Partial Trajectory	Number of particles	50% Partial Trajectory	70% Partial Trajectory	90% Partial Trajectory
1000	10.63	12.83	14.81	1000	10.38	13.21	16.52
2000	10.83	13.97	15.91	2000	11.36	14.33	17.86
3000	11.81	14.04	16.75	3000	12.55	15.37	20.15
Ta	Table 1: Execution time (seconds) in MATLAB			Table 2: Execution time (seconds) in python			

Overall Accuracy Analysis

Prediction accuracy

	Accuracy KF	Accuracy LE	Accuracy PF
50 %	24.615	12.307	29.23
70 %	43.076	27.692	64.615
90 %	83.076	40	89.23

^{•••• ••} Accuracy KF — I Accuracy LE — I Accuracy PF

Concluding Remarks

- Three different ways of target / trajectory prediction
 - ANN for detecting phases of movements
 - Imitation Learning to learn trajectory from historical patterns
 - Particle Filter that does not require training data
- Standardizing evaluation criteria for trajectory prediction algorithms
 - Accuracy
 - Latency
 - Sensitivity how quickly can we predict

Intelligent Inclusive Interaction Design

https://cambum.net pradipta@iisc.ac.in

