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[1Sc develops eye gaze-controlled
robotic arm for those suffering from
speech and motor impairment

YGATES From digital accessibility to
Cambridge
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Q\C" » Designing VR model of Gaganayan Crew Cabin funded through

ISRO Human Space Flight Centre (T 38L)

» Metaverse related projects with Siemens, Germany (% 77L) and
Collins Aerospace, USA (T 71L)

»  Designiig Advanced HMI for next generation fighter aircraft
platforms funded through Aeronautical Development Agency
(ADAX) & ARDB, DRDO (¥ 2 Cr)

D\(%%E;ng VR model of Office Spaces funded by British Telecom,

Patented AR-based Interactive Head Up Display System with Forvia
(Faurecia), France (F60L)

Developed VR based Flight Simulator as part of lISc-Hindustan
Aeronautical Ltd (HAL) Skill Development Centre (T 42L)
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Robotics systems
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Pradipta Biswas talks about how his research on digital
~cessibility led to work on India's space programme.
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Dr Archana Hebbar (2018-23) is Senior Principal
Scientist at CSIR-NAL
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Rapid Aiming Movements

Quick

Accurate

Preprogrammed




Analysis of Rapid Aiming Movements

Woodworth's study Fitts’ Law

Eye open — visual feedback

Error » Speed

T =a+blog, (1 +2)
‘ PAUL M. FITTS
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» Phases of tus. The task was to hit the

Card's first home run came when he used a then-little-known law called "Fitts' law” to examine input without touching either side
devices such as joy sticks, a head-motion detector, and a newfangled controller that hung by a cable
from the computer called a "mouse.” Fitts' law analyzes how easily a human can hit any given target -
in this case, moving a cursor 1o a specific point on a screen - and Card measured the mouse To be
almost as simple as if one could move the cursor around on the screen with one's hand. After Card's
work, Xerox began manufacturing mice, Apple soon followed, and now they're practically de rigueur
on all computers.

» |nitial

» Curre






Analysing Trajectory

Source

Target



Algorithm — Neural Network

®» [or every change in position of pointer in
screen

» Calculate angle of movement

» Calculate velocity of movement

= alculate acceleration of movement Velocit

Phase of

» Rupf Neural Network with Angle, Velocity and
Movement

celeration Bearin
» / Check output Angle
If output predicts homing phase

» Find direction of movement

-» Find nearest target from current location
towards direction of movement



Classifier Result

Comparing F1 scores for different Classifiers
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Availability: In how many
pointing tasks the algorithm
makes a successful prediction.

Accuyracy. Percentage of
copfect prediction among all
edictions

Sensitivity: How quickly an
algorithm can detect
intended target

y For Mouse

Evaluation Criterio

Accuracy for Moase

Sensitivity for Mouse
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Proposed Applications

Vent Control *.
|
|

=5 <-|

Emergency

&
=, Interactive HUD
',Q\' I3D Lab, IISc

MusicVideo * . ¥

G. Prabhakar, A. Ramakrishnan, L. R. D Murthy, V. K. Sharma, M. Madan, S. Deshmukh and P. Biswas, Interactive Gaze & Finger controlled HUD for Cars, Journal
on Multimodal User Interfaces, Springer, 2019

P. Biswas, S. Deshmukh, G. Prabhakar, M. Modiksha, V. K. Sharma and A. Ramakrishnan,A System for Man- Machine Interaction in Vehicles , Indian Patent
Application No.: 201941009219, PCT International Application No. PCT/IB2020/050253

P. Biswas and P. Langdon, Mutimodal Target Prediction Model, ACM CHI 2014 Extended Abstract

P. Biswas, and P. Langdon, Multimodal Intelligent Eye-Gaze Tracking System, International Journal of Human-Computer Interaction 31(4), Taylor & Francis, Print
ISSN: 1044-7318



Learning from Demonstrations (LfD)

Variability in
user
demonstrati
ons
-

Difficult to '
optimize these Why _Real-time
variations and challenging lmplgmenta
predict future ? tion

trajectory

Y g
Needs to be
Quick and

accurate

Learning from
demonstrations (LfD)

Imitation learning (IL)

Behavior cloning (BC) —

learning directly from

actions, quick but less
accurate

Inverse reinforcement
learning (IRL) — learning a
reward function from
actions, time consuming
but accurate




Inverse Reinforcement Learning (IRL)

IRL = learn r under which expert demonstrations are optimal

s - state
D ={1;},i = 1,.., M be the expert dataset

f - features, captures human preferences during the
task.

w - feature weights

r - reward

The likelihood of expert demonstrations:
r(Ty,w)

M M 1
e
P(D|w) = | | — = | |_er(fi,w)
L ZTiEDer(Tl,w) - VA

Objective:

w* = argmax%logP(Dko) = argmaX%Z{-\/lzl{lOgP(wa}}
w w

Features: distance, velocity, acceleration and jerk

M Mitra, P Pati, VK Sharma, S Raj, PP Chakrabarti, P Biswas, Comparison of Target Prediction in VR and MR using Inverse Reinforcement Learning, ACM

International Conference on Intelligent User Interfaces (1Ul 23)

Algorithm 1 Target Prediction

Input: Partial hand trajectory ¥ = {s1, ..., 5,,}, Goal GeG,
MDP = {S, A, T,v,rq}, raeR.
Output: Predicted goal Gpred
I: for Gin G do
2 ra+G
3. Initialize Vo =0
4 Update Vg « (rg,S,A,T,),
5 p(YIG) = exp[{Yityra (80} + Ve (8m) — Va (1))

, W — _ p|G)p(G)
6 p(GlY) = v Swiomne
7: end for

8: Gpred < maz p(G|v)

Future hand trajectory is obtained using T6yreq

For multimodal prediction, prior p(G) is obtained from the
gaze data



Sampling-based Maximum Entropy IRL
(SMEIRL)

Z is approximated by summation over all sample
trajectories Y,, m =1, ..., K

Objective:

1w K
L(w) = Mz R(t;, w) — log z eR(¥mw)
i=1 m=1

M
1 - .
Vol = i Zl{f(Ti) — f(h, w)}

Maximum Entropy Deep IRL (MEDIRL)

Reward r is estimated by a neural network: 7, (s) = g(f(s), w)

w” is obtained by backpropagating the gradient: Z_Z = (up — E[u

Up > State visitation
frequency (SVF)
obtained from expert
dataset

E[u] = Expected SVF
from learned reward
at each iteration

Approximate value
iteration and policy
propagation
algorithm were used
to estimate SVF

Robot Interaction, ACM International Conference on Intelligent User Interfaces (1Ul 24)

[ ]) ag(f,w)

Jw

Algorithm 2 Tareet Prediction using MEDIRL

I: function MEDIRL

2: Input: Expert dataset %, partial trajectory o,
MDP, teatures(), MEDIRL(), targetPred(), wvalueltera-
tion(), goal &, prediction horizon Al = Input

parameters

t « features(D) - Feature estimation
4: rw + MEDIRL(D, MDP, () > Reward learning

Gy pprrn + tareetPred(r,,, ) = Intended target
prediction

:,?EF i _"h’\_I 4 \-'i-.’llLI.Cl[Crﬂ.[iﬁn{(;’j”-r-;j_,ﬂj-,'}),r,I'“‘} [=
FFuture trajectory prediction

return Gy pprp, @l + Al) = Return the result
% end function

Lid

L

&
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M Mitra, AA Patil, GVS Mothish, G Kumar, A Mukhopadhyay, Murthy LRD, PP Chakraborty, P Biswas, Multimodal Target Prediction for Rapid Human-




Target prediction during a
pointing task in VR and MR

*Hand movement prediction using SMEIRL

Enhanced Human-Robot
Collaboration with Intent

Prediction using Deep Inverse
Reinforcement Learning

*Hand movement prediction using MEDIRL

Multimodal Target Prediction for
Rapid Human-Robot Interaction

eHand movement prediction using MEDIRL + eye gaze

Pointing Task

Correct Prediction




Behavior Cloning: Feature-based Bayesian Interaction

Primitives (FBIP)

IRL accurate but slow

Hand motion representation with time-dependent basis functions
and weights:

dd . 2
J(t) = Zf:‘:r'p —M w; +e(t)

i=1

Basis matrix:

¢y () - o @r (piza)
P —
[f-'l’f':d (1) - - diza (piza)
Objective:

w* = arg maxlog (p (¢|w))

w* was obtained using EKF with state vector as the weights of the basis
function. Future hand trajectory:

o(t+ At) = & (t + At w* (1)

) Feature modeling in latent space
Demonstrations

extraction representation @

[—]
U
. a Training trajectory Feature Features Basis Basis matrix Joint
| T f distribution
.

User interface

Detection and tracking Visual prediction feedback

Training and inference

="
‘&“ ; \ Partial trajector : Optimal Predicted trajectory 4
B R
a\:‘fﬂrj" = @)
Prediction
Algorithm 1 Target Prediction using FBIP
I: function FBIP
Z: Input: Expert dataset ©, partial trajectory i, fea-
tures(), gaussianRBE(), EKF(), predGoal(), prediction
horizon Al & Input parameters
3: f « features(D) = Feature estimation
4: P+ gaussianRBE(f) = Basis matrix formulation
5 w* + EKF{b, o) = Optimal state vector
6 w(l+ AL) + ®(L + At)Tw*(1) © Future trajectory
prediction
7: Grprp + predGoal(p(l + Al)) = Intended target
prediction
return Grprpe, el + Al) & Return the result

o: end function




Fast and Accurate: Rapid Human-Robot Handover
for Collaborative Assembly and Disassembly

IEEE International Conference on Robotics and Automation (ICRA 24)
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Interactive Digital Twins PoC

Office-based Workplaces

Solutions to Key Challenges

Know how much energy is
@ used and what is used for

operations

Energy Consumption Estimation

\'va.w- o0 € 2 Ce——

Ul/‘ Maximise capacity
b considering foot traffic

Occupancy Simulation
e e

.’

[ ] Know how much space is
Tﬂ-\- used to make decisions

Plan an effective workplace strategy,

identifying workflows
&‘ and considering employees' health,

safety and welfare

Special Workflows
(e.g., Social Distancing Analysis)

AR Guided
Navigation

Our Scalable Solution

Privacy-by-design approach
* Anonymised real-time person and posture
detection

Energy consumption estimation using Al
* Remote asset monitoring
* Real time alerts as per set up thresholds

]
(Y- Al-based real-time occupancy insights

7’ N . . H
= + Insightsinto usage and movement in

different size facilities
|% Low-cost devices
e Cameras & sensors

e o Workflow tracking

)

* Real-time activity mapping between physical
and virtual spaces

* Occupancy monitoring

* Special workflows (auditing usage of personal
protective equipment (PPE) in specific areas)

@ Simulation capabilities
* Optimisation and planning using a 3D virtual

reality replica of the physical space
» Standard and special scenarios (e.g., social
distancing and reduced office capacity)

Stakeholder
BT India Workplace Team

BT Group | General | 22

Benefits

i

Optimised space
management and
asset utilisation

Provide detailed insights
collecting and visualising
(near) real-time data

Cost reductions
and rebalancing

Iad

Increase operational
efficiency

. Biju Chanath, International Workplace, Property and Facilities
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Particle filter overview

Initializing the

Predict the traiectorv for fut ) Plot actual, particles based
redict the trajectory for future partial, e
points _ |

predicted trajectory

* Motion model (particles, velocity

trajectories
and std) )

Initial
Particle
generation

Defining the parameters
- Number of particles: 3000
- Destination positions

- Noiseandstd:0.1, 1
- % of partial trajectory

Update weights of particles on weighted

Estimate
position

Defining
parameters

average of the
particles

Estimate
Velocity

Particle
Filter loop

Resample particles based on

, , Estimating the
their weights

mean velocity of
human walking

Partial
trajectory

Estimating the
{ position based

(Vx, Vy)
Predicting
Estimate the position based on future points Defining the
particle weights partial trajectory
J 0.5/0.7/0.9




Data collection

* Obtained the human trajectory points using computer vision

« Camera placed at a static position and participants walked naturally from Trajectory area
source to destination

 Cameras placed at various positions and heights (1.5m to 2.4m) to capture
diverse perspectives. Different camera angles including top view, angled
view and side view are captured.

* Object detection model processed frames at 7 to 8 fps

* Length of the path: 6.6 meters (maximum length) with approximately 80-
100 points (depends on the path length)

* Number of participants: 14 participants (5.7ft average height)

* Average steps required from source to destination: (11/8/6/4 steps
depends on destination location)

* Percentage of partial trajectory: 50%, 70% and 80%

* Destination points: Predefined nine locations as destination points

* Participants were asked to walk straight with minor turns

origin P1

* Number of trajectory : 227 trajectories



Overall particle filter working

60% of actual trajectory

227 trajectories.

Simulated Trajectory +108e3 " 500 4 >
—— Simulated Trajectory 0.3 @ /
1000 1
400 A
0.2 ¢
: 800 01 300 A
S ©
g €00 0.0 200 1
=0.1
400
02 100 1
001 i i i i -0.3 0 1
. 0 XPositon 0 5067 5068 5069  507.0 5071 5072 100 200 300 400 500 600 700
Actual trajectory from raw data Particle intfialization around imitial Path prediction using particles
jectory p gp
position
Simulated Trajectory . . . True, Estimated, and Predicted Future Tra]ecti\e:s“malm —
1o {7 Predicting the trajectory for 60% path | = e
1000 The figure shows 60% of trajectory
w00 prediction - . .
2 Based on previous velocity and :
S 800 . .. 3
£ weights prediction takes place for 10 |* =
o0 future steps
600 Upcoming: -
— Simulated Trajectory . .
™ e Accuracy testing using PF for all the o
x Posi'“on 500 €00 ?Og position 800 200

Prediction shown in green dots




Implementation

 CameraIntegration:
* Object detection model to detect users
* Coordinate values are sent to particle filter algorithm

* Particles are uniformly distributed through out the
area

* Each particle represents possible state of the user
» State Representation:

* Defining a state vector to include parameters such
as position (x and y), velocity and acceleration

* \Velocity and acceleration are obtained from
coordinate profile/data

* Motion model:

* To predict future state of each particle “Motion
model” is implemented

* Our motion model consists of velocity and
acceleration to simulate the human motion




Simulations — Matlab & Python

Number
of particles

1000
2000
3000

S50%
Partial
Trajectory

10.63
10.83
11.81

70% Partial
Trajectory

12.83
13.97
14.04

90% Partial
Trajectory

1481
1591
16.75

Table 1: Execution time (seconds) in MATLAB

Number of
particles

1000
2000

3000

400

600

800

1000
0 250 500 750 1000 1250 1500 1750

Trajectory Tracking

— Total Trajectory
1000 4 — Partial Trajectory
—— Estimated Trajectory

800 A

600 A

400

200 1

500 600 700 800 900 1000
Execution time: 17.9306 secon ds

50% Partial 70% Partial

Trajectory Trajectory
10.38 13.21
11.36 14.33
12.55 15.37

Table 2: Execution time (seconds) in python

90% Partial
Trajectory

16.52
17.86

20.15
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Overall Accuracy Analysis

Prediction accuracy

90%
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Accuracy KF | AccuracyLE | AccuracyPF
50% 24.615 12.307 29.23
70% 43.076 27.692 64.615
90% 83.076 40 89.23
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Concluding Remarks

» Three different ways of target / trajectory prediction
» ANN for detecting phases of movements
®» |mitation Learning to learn frajectory from historical patterns

» Particle Filter that does not require training data

» Standardizing evaluation criteria for trajectory prediction algorithms
» Accuracy
®» | atency

» Sensitivity — how quickly can we predict
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