

DIJKSTRA'S ALGORITHM
By Laksman Veeravagu and Luis Barrera

THE AUTHOR: EDSGER WYBE DIJKSTRA

"Computer Science is no more about computers than
astronomy is about telescopes."

http://www.cs.utexas.edu/~EWD/

A* VISUALIZATION

Visualization of A*

Vis Credit : https://qiao.github.io/PathFinding.js/visual/

EDSGER WYBE DIJKSTRA

- May 11, 1930 – August 6, 2002

- Received the 1972 A. M. Turing Award, widely considered the
most prestigious award in computer science.

- The Schlumberger Centennial Chair of Computer Sciences at
The University of Texas at Austin from 1984 until 2000

- Made a strong case against use of the GOTO statement in
programming languages and helped lead to its deprecation.

- Known for his many essays on programming.

SINGLE-SOURCE SHORTEST PATH PROBLEM

Single-Source Shortest Path Problem - The problem of
finding shortest paths from a source vertex v to all other
vertices in the graph.

PRELIMINARY CONCEPTS

 Shortest Path (If exists)

Sℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑜𝑜ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚{ 𝑤𝑤 𝜋𝜋 | 𝑝𝑝𝑃𝑃𝑜𝑜ℎ𝑜𝑜 𝜋𝜋 𝑜𝑜 → 𝑜𝑜}
 DAG Relaxation

This maintains an upper estimate 𝑑𝑑 𝑜𝑜, 𝑣𝑣 estimates upperbound and then
gradually lowered until equal to 𝛿𝛿(𝑜𝑜, 𝑣𝑣)
 If 𝑑𝑑 𝑜𝑜, 𝑣𝑣 > 𝑑𝑑 𝑜𝑜,𝑢𝑢 + 𝑤𝑤 𝑜𝑜, 𝑣𝑣 , then “relax” by changing d(s,v) to 𝑑𝑑 𝑜𝑜,𝑢𝑢 +
𝑤𝑤 𝑜𝑜, 𝑣𝑣

 Triangle Inequality
If δ(u,v) is the shortest path length between u and v,

δ(u,v) ≤ δ(u,x) + δ(x,v)

Presenter Notes
Presentation Notes
Relaxation is safe : each d(s,v) is weight from some path from (s,v). You cant go below shortest path.

DIJKSTRA'S ALGORITHM
Dijkstra's algorithm - is a solution to the single-source
shortest path problem in graph theory.

Works on both directed and undirected graphs. However, all
edges must have nonnegative weights.

Approach: Greedy

Input: Weighted graph G={E,V} and source vertex v∈V, such
that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths
themselves) from a given source vertex v∈V to all other
vertices

DIJKSTRA

 If 𝑤𝑤 ≥ 0, then distance increases along shortest path
𝛿𝛿 𝑜𝑜,𝑢𝑢 ≤ 𝛿𝛿 𝑜𝑜, 𝑣𝑣

 Relax edges from vertices in increasing order of distance from s
 Find next vertex efficiently using a Data Structure

 We will use a priority queue over here (priority is the d value)

s u v

Presenter Notes
Presentation Notes
Weakly monotonic

DIJKSTRA'S ALGORITHM - PSEUDOCODE

dist[s] ←0
for all v ∈ V–{s}

 do dist[v] ←∞
S←∅
Q←V
while Q ≠∅
do u ← mindistance(Q,dist)

 S←S∪{u}
 for all v ∈ neighbors[u]

 Relax {u,v,w}
return dist

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

Presenter Notes
Presentation Notes
Its like a mix of breadth first search and dfs. As in BFS you come to a node and then you see all the vertices you can reach from that vertex. Then we will select from the frontier we have created, the vertex that is shortest distance away from me.

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA'S ALGORITHM - CORRECTNESS

 Because of time constraint we will not go deep into
correctness proof

 The algorithm’s correctness can be proved via induction
 Hints:

 Optimal Substructure Property
Optimal solution can be constructed from optimal

solutions of its subproblems
 Relaxation is safe
 Non-negative weights

IMPLEMENTATIONS AND RUNNING TIMES

 For the given priority queue we are performing three
different operation
 Build
 Extract minimum
 Decrease key

Pic Credit : https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-spring
2020/d819e7f4568aced8d5b59e03db6c7b67_MIT6_006S20_lec13.pdf. MIT Introduction to algorithms

https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-spring-2020/d819e7f4568aced8d5b59e03db6c7b67_MIT6_006S20_lec13.pdf
https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-spring-2020/d819e7f4568aced8d5b59e03db6c7b67_MIT6_006S20_lec13.pdf

DIJKSTRA VS A*

Visualization of A* Visualization of Dijkstra

Vis Credit : https://qiao.github.io/PathFinding.js/visual/

Why Dijkstra?
No Heuristic Dependency: Dijkstra's algorithm does not require a heuristic function, making it more
suitable when no good heuristic is available or when you need guaranteed correctness without the risk of
an inadmissible/inconsistent heuristic.
Guaranteed Exploration: Dijkstra explores all reachable vertices, making it ideal for applications like
finding the shortest path to all nodes (e.g., in network routing) rather than a single destination.

C
S223 Advanced
D

ata Structures
and Algorithm

s
26THE BELLMAN-FORD SHORTEST PATH

ALGORITHM

NEIL TANG
03/11/2010

SHORTEST SIMPLE PATH

 Shortest Path (If exists)

Sℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑜𝑜ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚{ 𝑤𝑤 𝜋𝜋 | 𝑝𝑝𝑃𝑃𝑜𝑜ℎ𝑜𝑜 𝜋𝜋 𝑜𝑜 → 𝑜𝑜}
 If 𝛿𝛿(s, v) is finite then there is a shortest path from s-v is simple
 Simple path in a graph is a path that does not revisit any vertex

 At most |v| vertex
 At most |v|-1 edges

 𝛿𝛿 𝑉𝑉 𝑜𝑜, 𝑣𝑣 < 𝛿𝛿 𝑉𝑉 −1 𝑜𝑜, 𝑣𝑣 then 𝛿𝛿 𝑜𝑜, 𝑣𝑣 = −∞

Presenter Notes
Presentation Notes
Create a cycle. If there is a cycle and it is negative then we will keep on moving in that and it become infinite. If it is 0 then remove it

C
S223 Advanced D

ata
Structures and Algorithm

s

29

THE BELLMAN-FORD ALGORITHM
Bellman-Ford(G, w, s)
1. Initialize-Single-Source(G, s)
2. for i := 1 to |V| - 1 do
3. for each edge (u, v) ∈ E do
4. Relax(u, v, w)
5. for each vertex v ∈ u.adj do
6. if d[v] > d[u] + w(u, v)
7. then return False // there is a negative cycle
8. return True

Relax(u, v, w)
 if d[v] > d[u] + w(u, v)
 then d[v] := d[u] + w(u, v)
 parent[v] := u

Presenter Notes
Presentation Notes
Graph Duplication. Make levels in the graph, where vertek vk in level k represents reaching represents reaching vertex v using at most k edges.

C
S223 Advanced D

ata
Structures and Algorithm

s

30

THE BELLMAN-FORD ALGORITHM

∞,nil

∞,nil

∞,nil

0

6

7
9

5

-3
8 7-4

2
∞,nil

s

y z

xt

-2

C
S223 Advanced D

ata
Structures and Algorithm

s

31

GRAPH DUPLICATION

∞,nil

∞,nil

∞,nil

0

6

7
9

5

-3
8 7-4

2
∞,nil

s

y z

xt

-2 6,s

7,s

∞,nil

0

6

7
9

5

-3
8 7-4

2
∞,nil

s

y z

xt

-2

Initialization After pass 1

6,s

7,s

4,y

0

6

7
9

5

-3
8 7-4

2
2,t

s

y z

xt

-2

After pass 2

2,x

7,s

4,y

0

6

7
9

5

-3
8 7-4

2
2,t

s

y z

xt

-2

After pass 3
The order of edges examined in each pass:
(s, t), (s, y),(t, x), (t, z), (x, t), (y, x), (y, t), (y, z), (z, x), (z, s),

C
S223 Advanced D

ata
Structures and Algorithm

s

32

THE BELLMAN-FORD ALGORITHM

After pass 4

2,x

7,s

4,y

0

6

7
9

5

-3
8 7-4

2
-2,t

s

y z

xt

-2

C
S223 Advanced D

ata
Structures and Algorithm

s

33

THE BELLMAN-FORD ALGORITHM VISUALIZATION

Vis Credit : TUM Bellman Ford : https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html

s

n1

n2

n3

n4

n5

The order of edges examined in each pass:
(s, n1), (n2, n3),(n2, n1), (n1, n3), (s, 2), (n4, n1), (n4, n2), (n5, s), (n5, n4)

C
S223 Advanced D

ata
Structures and Algorithm

s

34

THE BELLMAN-FORD ALGORITHM VISUALIZATION

Vis Credit : TUM Bellman Ford : https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html

The order of edges examined in each pass:
(s, n1), (n2, n3),(n2, n1), (n1, n3), (s, n2), (n4, n1), (n4, n2), (n5, s), (n5, n4)

s

n1

n2

n3

n4

s

n1

n2

n3

n4

n5

C
S223 Advanced D

ata
Structures and Algorithm

s

35

THE BELLMAN-FORD ALGORITHM

0

6

7
9

5

7s

y z

xt

-8
2

The order of edges examined in each pass:
(s, t), (s, y),(t, x), (x,y), (y, t), (y, z), (z, x),
(s, t), (s, y),(t, x), (x,y), (y, t), (y, z), (z, x),
(s, t), (s, y),(t, x), (x,y), (y, t), (y, z), (z, x),
(s, t), (s, y),(t, x), (x,y), (y, t), (y, z), (z, x),

C
S223 Advanced D

ata
Structures and Algorithm

s

36

TIME COMPLEXITY

Bellman-Ford(G, w, s)
1. Initialize-Single-Source(G, s)
2. for i := 1 to |V| - 1 do
3. for each edge (u, v) ∈ E do
4. Relax(u, v, w)
5. for each vertex v ∈ u.adj do
6. if d[v] > d[u] + w(u, v)
7. then return False // there is a negative cycle
8. return True

O(|V|)

O(|V||E|)

O(|E|)

Time complexity: O(|V||E|)

C
S223 Advanced D

ata
Structures and Algorithm

s

37

DIFFERENCES

 Negative link weight: The Bellman-Ford algorithm
works; Dijkstra’s algorithm doesn’t.

 Time complexity: The Bellman-Ford algorithm is
higher than Dijkstra’s algorithm.

 Dijkstra’s original paper:
E. W. Dijkstra. (1959) A Note on Two Problems in Connection
with Graphs. Numerische Mathematik, 1. 269-271.

 MIT OpenCourseware, 6.046J Introduction to Algorithms.
< http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-
Computer-Science/6-046JFall-2005/CourseHome/> Accessed
4/25/09

 Meyers, L.A. (2007) Contact network epidemiology: Bond
percolation applied to infectious disease prediction and control.
Bulletin of the American Mathematical Society 44: 63-86.

 Department of Mathematics, University of Melbourne. Dijkstra’s
Algorithm.
<http://www.ms.unimelb.edu.au/~moshe/620-
261/dijkstra/dijkstra.html > Accessed 4/25/09

REFERENCES

http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://www.ms.unimelb.edu.au/%7Emoshe/620-261/dijkstra/dijkstra.html
http://www.ms.unimelb.edu.au/%7Emoshe/620-261/dijkstra/dijkstra.html

	Shortest Path Algorithms
	Dijkstra's algorithm
	The author: Edsger Wybe Dijkstra
	Slide Number 4
	Edsger Wybe Dijkstra
	Single-Source Shortest Path Problem
	Preliminary Concepts
	Dijkstra's algorithm
	Dijkstra
	Dijkstra's algorithm - Pseudocode
	Dijkstra Animated Example
	Dijkstra Animated Example
	Dijkstra Animated Example
	Dijkstra Animated Example
	Dijkstra Animated Example
	Dijkstra Animated Example
	Dijkstra Animated Example
	Dijkstra Animated Example
	Dijkstra Animated Example
	Dijkstra Animated Example
	Dijkstra's Algorithm - Correctness
	Implementations and Running Times
	Slide Number 23
	The Bellman-Ford Shortest Path Algorithm ��Neil Tang�03/11/2010
	Shortest Simple path
	The Bellman-Ford Algorithm
	The Bellman-Ford Algorithm
	Graph Duplication
	The Bellman-Ford Algorithm
	The Bellman-Ford Algorithm Visualization
	The Bellman-Ford Algorithm Visualization
	The Bellman-Ford Algorithm
	Time Complexity
	Differences
	References

