Path Planning For
Autonomous Systems

Mukund Mitra, Pradipta Biswas

Mukund Mitra Pradipta Biswas

PhD Scholar, 1ISc Bangalore Assoc. professor, 11ISc Bangalore
Contact: mukundmitra@iisc.ac.in Contact: pradipta@iisc.ac.in

Definition: Path Planning

o Finding a continuous path connecting
start and goal

o Mobile robots, unmanned aerial
vehicles, and autonomous vehicles

o safe, efficient, collision-free, and least-
cost travel paths from an origin to a
destination

©)

©)

©)

Applications

Warehouse applications
Manufacturing
Safety and patrolling

Autonomous driving

Classification

o Miscellaneous:

o Coverage path planning

Path Planning
o Potential-field based planning

o Human-aware path planning

Global path
planning

Local path
planning

AT Dijkstra RRT* DWA TEB Al- based
path planning

Visibility Graph

For graph-based algorithms like A*, Dijkstra

Assume the robot is a point in 2D planar space

Assume obstacles are 2D polygons.

Create a visibility graph:
o Nodes are start point, goal point, vertices of obstacles
o Connect all visible nodes, that is, a straight line unobstructed path between any two nodes.
o Include all edges of polynomial obstacles.

o Implement any graph search algorithm like A star, Dijkstra from start node to goal node

&

AV ‘
AN

O O O O

goal

start

Minkowski Sum

o Do Mapping
o Robot is 3D with some volume, may collide with the obstacles
o Inflate the obstacles and then implement the algorithms, Minkowski sum

o What if the size of real workspace is very large? i

I'(p)#7(p) 7(a) “I(a)
P¢’ "0

P&O0={x|x=p+q.peP.qe)

. &
0, =(ZeC:R(Z)NO, £ ¢)
AN :
(0 =06 (-R)

Dijkstra’s Algorithm

A solution to the single-source shortest path
problem in graph theory

Works on both directed and undirected graphs.
All edges must have nonnegative weights.
Approach: Greedy

Input: Weighted graph G={E,V} and source
vertex V€V, such that all edge weights are
nonnegative

Output: Shortest paths from a given source
vertex v€V to all other vertices

60 ~

50 1

20 7

10 ~

-10

10

20

30

50

60

70

Dijkstra’s Algorithm

Initiahize:

;A B C D E

0 o0 o0 o0 o0

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

9 S:{A4 CEBD}

Dijkstra’s Algorithm: Application

o Traffic Information Systems are
most prominent use

o Mapping (Map Quest, Google

From Computer Desktop Encyclopedia
. X . . = 1992 The Computer Language Co. Inc.
g YR NN)
M a ps) By g‘ i o7 p S \Q\ﬁ‘é & %‘ﬁ
L b % s " S Router A
2 LAY 2 '?5% Yy ,4@ < " i -
H) GO, & PR P2y Rouwting Table
) iy St 2 N %, #T A0
o Routing Systems i RS NI Togoto Routevia hub r
network: port #

10.0.0.0
10,000 1
20000 2 =

-
30.0.0.0 3 =
NS 40.0.0.0 1 o =
% 3 i
: Hmn % . NI 2N . Port 1
I g z Yo o Whe, 4 E Port 1
A e - X TRRORANG N
e EN : .. AN Router A, =
8 eniral < £ =
i B\ (] s @‘B_wt._ 7 — Router B
Bma? Bl L e Port 2 Port 3 =
S ¢
g] , Port 2
o i it LhSI @5@ ?
d oL =2
%@ H o St %; 2 % = = | = |
@ Frankin - g |5 B 12 el n"_ n_,—
» Square % i - J;:;{ n-'— g g
i ELE S = fayar
% EE{Z H '§§ i d \n g n/
s 1 o) 5E 30.0.0.0
NG R A =iy & 20.0.0.0 40.0.0.0
nd S E] § @ | { 16th
18ih St § @ E\e\nst '
H £ z d [| |mrE

A* Algorithm

Popular graph traversal path planning algorithm
Similar to Dijkstra’s, except that it guides its
search towards the most promising states,
saving a significant amount of computationtime
Uses the least expensive path and expands it
using the function shown below:

o f(m)=gm +h(n)
Applications:

o Manufacturing industries

o Manipulators and mobile robots
o Social navigation

Clone Repository

return self.color == BLACK

is_start(
return

Lf.color = WHITE

ef make_start(self):

Lf.color = RED

f make_closed(self):
Lf.color = CYAN

ef make_open(self):

Lf.color = TURQUOISE

def make_barrier(self):
elf.color = BLACK

def make end(self):

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL

1: Python

A" Vs Dijkstra

Mode

Parameters 8 tip ERIng

Path Search

Map Setting

Obstade (%)

1. Search algorithm Best first Greedy best oA Tar
search/directe first —
d search search/blind
search
2. Time complexity O(n log n) 0O(n?)
3. Heuristic function f(n) = f(n) = g(n)
g(n)+h(n) |

4. Rate of convergence Faster Slower

Motion Planning

o Problem
o Given start state X, goalstate X,
o Askedfor: a sequence of controlinputs that leads from startto goal
o Why tricky?
o Need to avoid obstacles
o Forsystemswith underactuated dynamics: can’tsimply move alongany coordinate at will
o E.g.,car, helicopter, airplane, but also robot manipulator hitting joint limits

Solve by Nonlinear Optimization for Control?

o Couldtry by, forexample, the following formulation:

min, , (zr — xg)T(xT —xg)
s.t. Ter1 = f(zg,ug) Vi
uy € Uy
T € X
To'= &g

o Or, with constraints:

min, . | ull
s.t. Te41 = f(xg,up) VE
uy € Uy
T € Xy
g =1Igs
Xt =z¢

o Formorecomplicated problems with longer horizons, often get stuck in local maxima that don’t
reach the goal

Motion Planning: Outline

o Configuration Space
o Probabilistic Roadmap
o Boundary Value Problem
o Sampling
o Collisionchecking
o Rapidly-exploring Random Trees (RRTs)
o Smoothing

Configuration Space (C-Space)

={x| X is a pose of the robot}

o obstacles = configuration space obstadles
Workspace Configuration Space

(2 DOF: translation only, no rotation)

»

free space

obstacles

4
[]

Motion planning

. conf-1 %
conf-3

’ conf-1
conf-2

= Pelb

Pshou

Probabilistic Roadmap (PRM)

Space R" forbidden space Free/feasible space
N

/|
)4
=

Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random

Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random

L

Probabilistic Roadmap (PRM)

Sampled configurations are tested for collision

Probabilistic Roadmap (PRM)

The collision-free configurations are retained as milestones

)4

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors
O
O
>\4 i t .
O & o: } i)
@ @
% @

Probabilistic Roadmap (PRM)

The collision-free links are retained as local paths to form the PRM

Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones

Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones

Probabilistic Roadmap

Initialize set of points with xS and xG
Randomly sample points in configuration space
Connect nearby points if they can be reached from each other
Find path from X, to X in the graph
o alternatively: keep track of connected components incrementally, and declare success when
X, and X are in same connected component

0O O O O

Example

PRM: Challenges

o Connecting neighboring points: Generally requires solvinga Boundary Value Problem:

Inin'u.,a: || u ”
s.t. Tig1 ; flxe,up) VE Typically solved without
E . . .
up € Uy collision checking; later
Ty = Xf, . e . . HP
o verified if valid by collision
0 —<Ls .

B o checking

o Collisionchecking:
o Oftentakes majority of time in applications (see Lavalle)

PRM'’s Pros and Cons

o Pro:
o Probabilistically complete:i.e., with probability one, if run forlongenoughthe
graph will contain a solution path if one exists

o Cons:
o Requiredto solve boundaryvalue problem
o Build graph over state space but no particularfocus on generating a path

Rapidly exploring Random Trees

o Basic idea:
o Build up a treethrough generating “next states”in the tree by executingrandom controls
o However: not exactly above to ensure good coverage

Rapidly-exploring Random Trees (RRT)

GENERATE_RRT (zjn;t, K, At)
1 T .init(zm);
2 fork=1to K do
3 Trand < RANDOM_STATE();
4 Tnear ¢ NEAREST _NEIGHBOR(%yqnd, T);
5 u & SELECTINPUT(%rand, Trear);
6 Tnew & NEW_STATE (2607, u, At);
7 T .add_vertex(Z ey);
8 T-add—edge(xneara Lnew, U),
9 Return T

o RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal state with probability 1%,
this ensures it attempts to connect to goal semi-regularly

RRT Pseudo code

Qgoal //region that identifies success
Counter = 0 //keeps track of iterations
1im = n //number of iterations algorithm should run for

G(V,E) //Graph containing edges and vertices, initialized as empty
While counter < lim:

Xnew = RandomPosition()
1f IsInObstacle(Xnew) == True:
continue
Xnearest = Nearest(G(V,E),Xnew) //find nearest vertex
Link = Chain(Xnew,Xnearest)
G.append(Link)
1f Xnew 1in Qgoal:
Return G
Return G

RRT Path: Example

RRT Graph: Example

RRT Practicalities

o NEAREST_NEIGHBOR(x,4n4, T): need to find (approximate) nearest neighbor efficiently
o KD Trees data structure

o SELECT_INPUT(X;qnds Xnear)
o Two point boundaryvalue problem
o Iftoohardto solve, oftenjust selectbest out of a set of control sequences. This
setcould be random, orsome wellchosen set of primitives

RRT Extension

o No obstacles, holonomic:

(i)

o

o W.ith obstacles, holonomic:

I

o Non-holonomic: approximately (sometimes as approximate as picking best of a few
random controlsequences) solve two-pointboundaryvalue problem

Growing RRT

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_ Random_Tree_ (RRT) 500x373.gif

Bi-directional RRT

o Volume swept out by unidirectional RRT:

o Volume swept out by bi-directional RRT:

o Difference becomes even more pronounced in higher dimensions

Resolution-Complete RRT (RC-RRT)

o lIssue: nearest points chosen for expansion are (too) often the ones stuck behind an obstacle

g1 qac

o RC-RRT solution:

o Choose a maximum number of times, m, you are willing to try to expand each node

o For each node in the tree, keep track of its Constraint Violation Frequency (CVF)

o Initialize CVF to zero when node is added to tree

o Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle):
o Increase CVF of that node by 1
o Increase CVF of its parent node by 1/m, its grandparent 1/m2, ...

o When a node is selected for expansion, skip over it with probability CVF/m

RRT*

Two differences from RRT:
o Records the distance each vertex has traversed relative to its parent vertex
o Rewiring of the tree

RRT*

First, RRT* records the distance each vertex has traveled relative to its parent
vertex. This is referred to as the cost() of the vertex. After the closest node is
found in the graph, a neighborhood of vertices in a fixed radius from the
new node are examined. If a node with a cheaper cost() than the proximal
node is found, the cheaper node replaces the proximal node. The effect of
this feature can be seen with the addition of fan shaped twigs in the tree

structure. The cubic structure of RRT is eliminated.

RRT*

The second difference RRT* adds is the rewiring of the tree. After a vertex
has been connected to the cheapest neighbor, the neighbors are again
examined. Neighbors are checked if being rewired to the newly added vertex
will make their cost decrease. If the cost does indeed decrease, the neighbor
is rewired to the newly added vertex. This feature makes the path more

smooth.

RRT*

Algorithm 6: RRT*

© 00 N4 O ot b W N =

[——
N -~ O

13

14

15

16

17

V¢« {xinit}; E + 0;

fori=1,...,04d0

Trand ¢ SampleFree;;

Tnearest < NeareSt(G = (Va E)a xrand);

Tnew ¢ Steer(Znearest; Trand) ;

if ObtacleFree(Tycarest; Tnew) then

Xnear — Near(G = (V, E), Zpew, min{ygrr- (log(card (V))/ card (V))/4,5}) ;

V4V {xncw};

Tmin 4 Tnearest; Cmin < COSt (mncarcst) G C(Line (:L'nearcsta mncw));

foreach zcar € Xpear do // Connect along a minimum-cost path

if CollisionFree(Znear, Tnew) A COSt(ZTnear) + c(Line(Znear; Tnew)) < Cmin then

l_ Tmin € Tnear; Cmin COSt(xncar) o C(Line(xncaramncw))

E+ FEU {(xmin,xncw)};

foreach zpear € Xpear do // Rewire the tree
if CollisionFree(ZTnew; Znear) A Cost(Znew) + c(Line(Zpew, Tnear)) < CosSt(Znear)
then zparent ¢ Parent(near);
E+ (E\ {(xparcntg xncar)}) U {(xncwa wnear)}

return G = (V, E);

RRT* Pseudo code

Rad = r
G(V,E) //Graph containing edges and vertices
For itr in range(0..n)
Xnew = RandomPosition()
If Obstacle(Xnew) == True, try again
Xnearest = Nearest(G(V,E),Xnew)
Cost(Xnew) = Distance(Xnew,Xnearest)
Xbest,Xneighbors = findNeighbors(G(V,E),Xnew,Rad)
Link = Chain(Xnew,Xbest)
For x’ in Xneighbors
If Cost(Xnew) + Distance(Xnew,x’) < Cost(x’)
Cost(x’) = Cost(Xnew)+Distance(Xnew,x’)
Parent(x’) = Xnew
G += {Xnew,x’}
G += Link
Return G

RRT* Path: Example

10

-10-

RRT* Path: Example

o Asymptotically optimal
o Mainidea:
o Swap new point in as parent for nearby vertices who can be reached along shorter path through
new point than through their original (current) parent

RRT*: Limitations

o Time?
o ~x8 times more time-consuming than RRT

RRT

Source: Karaman and Frazzoli

RRT*

g R 5 X P - q" = = - / [y) "f %
WAL T AL ,“ b) P s / f
8 1

10 : =
-10 -8 -6 -4 -2 0 2 0 -10 -8 -6 -4 -2 0 2 4 6

=S
[+2]

Source: Karaman and Frazzoli

Smoothing

o Randomized motion planners tend to find not so great paths for execution: very jagged, often much
longer than necessary
o In practice: do smoothing before using the path

o Shortcutting:
o along the found path, pick two vertices xt1, xt2 and try to connect them directly (skipping over all
intermediate vertices)
o Nonlinear optimization for optimal control
o Allows to specify an objective function that includes smoothness in state, control, small
control inputs, etc.

DWA: Dynamic-Window Approach

Discretize and maximize an objective function
given by:

o Glv,w) = a(a. heading(v, w) +

B.dist(v,w) + y.velocity(v, a)))

Heading (v, w) = alignment of robot with
that of direction of target.
Dist (v, w) = distance to the closest obstacle
if the corresponding (v, w) were chosen
Velocity (v, w) returns the ‘v’
Other planners include TEB(timed elastic
band) local planner, learning based path
planner, etc.

redicted position

actual position

DWA: Implementation

DWA

Maximizing solely the clearance (dist) and velocity => no incentive to move towards goal
Maximizing only heading, robot will not move around the obstacles

Using all three components, robot will move around obstacles as fast as it can

Local approaches are better for obstacle avoidance

Low computational complexity

Sometimes the robot gets stuck in local optimum

O 0O O O O O

	Slide 1: Path Planning For Autonomous Systems
	Slide 2: Definition: Path Planning
	Slide 3: Applications
	Slide 4: Classification
	Slide 5: Visibility Graph
	Slide 6: Minkowski Sum
	Slide 7: Dijkstra’s Algorithm
	Slide 8: Dijkstra’s Algorithm
	Slide 9: Dijkstra’s Algorithm
	Slide 10: Dijkstra’s Algorithm
	Slide 11: Dijkstra’s Algorithm
	Slide 12: Dijkstra’s Algorithm
	Slide 13: Dijkstra’s Algorithm
	Slide 14: Dijkstra’s Algorithm
	Slide 15: Dijkstra’s Algorithm
	Slide 16: Dijkstra’s Algorithm
	Slide 17: Dijkstra’s Algorithm
	Slide 18: Dijkstra’s Algorithm: Application
	Slide 19: cap A. to the asterisk operator Algorithm
	Slide 20: cap A. to the asterisk operator Vs Dijkstra
	Slide 21: Motion Planning
	Slide 22: Solve by Nonlinear Optimization for Control?
	Slide 23: Motion Planning: Outline
	Slide 24: Configuration Space (C-Space)
	Slide 25: Motion planning
	Slide 26: Probabilistic Roadmap (PRM)
	Slide 27: Probabilistic Roadmap (PRM)
	Slide 28: Probabilistic Roadmap (PRM)
	Slide 29: Probabilistic Roadmap (PRM)
	Slide 30: Probabilistic Roadmap (PRM)
	Slide 31: Probabilistic Roadmap (PRM)
	Slide 32: Probabilistic Roadmap (PRM)
	Slide 33: Probabilistic Roadmap (PRM)
	Slide 34: Probabilistic Roadmap (PRM)
	Slide 35: Probabilistic Roadmap (PRM)
	Slide 36: Probabilistic Roadmap
	Slide 37: Example
	Slide 38: PRM: Challenges
	Slide 39: PRM’s Pros and Cons
	Slide 40: Rapidly exploring Random Trees
	Slide 41: Rapidly-exploring Random Trees (RRT)
	Slide 42: RRT Pseudo code
	Slide 43: RRT Path: Example
	Slide 44: RRT Graph: Example
	Slide 45: RRT Practicalities
	Slide 46: RRT Extension
	Slide 47: Growing RRT
	Slide 48: Bi-directional RRT
	Slide 49: Resolution-Complete RRT (RC-RRT)
	Slide 50: RRT*
	Slide 51: RRT*
	Slide 52: RRT*
	Slide 53: RRT*
	Slide 54: RRT* Pseudo code
	Slide 55: RRT* Path: Example
	Slide 56: RRT* Path: Example
	Slide 57: RRT*: Limitations
	Slide 58: RRT*
	Slide 59: RRT*
	Slide 60: Smoothing
	Slide 61: DWA: Dynamic-Window Approach
	Slide 62: DWA: Implementation
	Slide 63: DWA

