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Definition: Path Planning

o Finding a continuous path connecting 
start and goal

o Mobile robots, unmanned aerial 
vehicles, and autonomous vehicles

o safe, efficient, collision-free, and least-
cost travel paths from an origin to a 
destination



Applications

o Warehouse applications

o Manufacturing

o Safety and patrolling

o Autonomous driving



Classification

o Miscellaneous:
o Coverage path planning

o Potential-field based planning

o Human-aware path planning

Path Planning

Global path 
planning

𝐴∗ Dijkstra 𝑅𝑅𝑇 ∗

Local path 
planning

DWA TEB AI- based 
path planning



Visibility Graph

o For graph-based algorithms like 𝐴∗, Dijkstra
o Assume the robot is a point in 2D planar space
o Assume obstacles are 2D polygons.
o Create a visibility graph:

o Nodes are start point, goal point, vertices of obstacles
o Connect all visible nodes, that is, a straight line unobstructed path between any two nodes.
o Include all edges of polynomial obstacles.

o Implement any graph search algorithm like A star, Dijkstra from start node to goal node



Minkowski Sum

o What if the size of real workspace is very large?
o Do Mapping

o Robot is 3D with some volume, may collide with the obstacles
o Inflate the obstacles and then implement the algorithms, Minkowski sum



Dijkstra’s Algorithm

o A solution to the single-source shortest path 
problem in graph theory

o Works on both directed and undirected graphs. 
All edges must have nonnegative weights.

o Approach: Greedy
o Input: Weighted graph G={E,V} and source 

vertex v∈V, such that all edge weights are 
nonnegative

o Output: Shortest paths from a given source 
vertex v∈V  to all other vertices



Dijkstra’s Algorithm
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Dijkstra’s Algorithm: Application

o Traffic Information Systems are 
most prominent use  

o Mapping (Map Quest, Google 
Maps) 

o Routing Systems



𝐴∗ Algorithm

o Popular graph traversal path planning algorithm
o Similar to Dijkstra’s, except that it guides its 

search towards the most promising states, 
saving a significant amount of computation time

o Uses the least expensive path and expands it 
using the function shown below:
o 𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

o Applications:
o Manufacturing industries
o Manipulators and mobile robots
o Social navigation



𝐴∗ Vs Dijkstra

S.N
o.

Parameters 𝑨∗ Dijkstra

1. Search algorithm Best first 
search/directe
d search

Greedy best 
first 
search/blind 
search

2. Time complexity O(n log n) O(𝑛2)

3. Heuristic function f(n) = 
g(n)+h(n)

f(n) = g(n)

4. Rate of convergence Faster Slower 



Motion Planning 

o Problem
o Given start state 𝑋𝑠, goal state 𝑋𝐺
o Asked for: a sequence of control inputs that leads from  start to goal

o Why tricky?
o Need to avoid obstacles
o For systems with underactuated dynamics: can’t simply  move along any coordinate at will
o E.g., car, helicopter, airplane, but also robot manipulator hitting  joint limits



Solve by Nonlinear Optimization for Control?

o Could try by, for example, the following formulation:

o Or, with constraints:

o For more complicated problems with longer  horizons, often get stuck in local maxima that don’t 
reach the goal



Motion Planning: Outline

o Configuration Space
o Probabilistic Roadmap

o Boundary Value Problem
o Sampling
o Collision checking

o Rapidly-exploring Random Trees (RRTs)
o Smoothing



Configuration Space (C-Space)

={x| xis aposeoftherobot}

o obstacles→  configuration spaceobstacles

Workspace Configuration Space

(2 DOF: translation only, no rotation)

free space 

obstacles



Motion planning



Probabilistic Roadmap (PRM)

Space Rn forbidden space Free/feasible space



Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random



Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random



Probabilistic Roadmap (PRM)

Sampled configurations are tested for collision



Probabilistic Roadmap (PRM)

The collision-free configurations are retained as milestones



Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors



Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors



Probabilistic Roadmap (PRM)

The collision-free links are retained as local paths to form the PRM



Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones

s

g



Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones

s
g



Probabilistic Roadmap

o Initialize set of points with xS and xG
o Randomly sample points in configuration space
o Connect nearby points if they can be reached from each  other
o Find path from 𝑋𝑠 to 𝑋𝐺  in the graph

o alternatively: keep track of connected components  incrementally, and declare success when 
𝑋𝑠 and 𝑋𝐺  are in  same connected component



Example



PRM: Challenges

o Connecting neighboring points: Generally requires solving a  Boundary Value Problem:

o Collision checking:
o Often takes majority of time in applications (see Lavalle)

Typically solved without  
collision checking; later  
verified if valid by  collision 
checking



PRM’s Pros and Cons

o Pro:
o Probabilistically complete: i.e., with probability one, if run  for long enough the 

graph will contain a solution path if  one exists

o Cons:
o Required to solve boundary value problem
o Build graph over state space but no particular focus on  generating a path



Rapidly exploring Random Trees

o Basic idea:
o Build up a tree through generating “next states” in the  tree by executing random controls
o However: not exactly above to ensure good coverage



Rapidly-exploring Random Trees (RRT)

o RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal state  with probability 1%, 
this ensures it attempts to connect to goal semi-regularly



RRT Pseudo code



RRT Path: Example



RRT Graph: Example



RRT Practicalities

o NEAREST_NEIGHBOR(x𝑟𝑎𝑛𝑑, T): need to find (approximate)  nearest neighbor efficiently
o KD Trees data structure

o SELECT_INPUT(x𝑟𝑎𝑛𝑑, x𝑛𝑒𝑎𝑟)
o Two point boundary value problem

o If too hard to solve, often just select best out of a set of control  sequences. This 
set could be random, or some well chosen set of  primitives



RRT Extension

o No obstacles, holonomic:

o With obstacles, holonomic:

o Non-holonomic: approximately (sometimes as approximate as picking  best of a few 
random control sequences) solve two-point boundary value  problem



Growing RRT

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif



Bi-directional RRT

o Volume swept out by unidirectional RRT:

o Volume swept out by bi-directional RRT:

o Difference becomes even more pronounced in higher dimensions

xS xG

xGxS



Resolution-Complete RRT (RC-RRT)

o Issue: nearest points chosen for  expansion are (too) often the ones  stuck behind an obstacle

o RC-RRT solution:
o Choose a maximum number of times, m, you are willing to try to expand each node
o For each node in the tree, keep track of its Constraint Violation Frequency (CVF)
o Initialize CVF to zero when node is added to tree
o Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle):

o Increase CVF of that node by 1
o Increase CVF of its parent node by 1/m, its grandparent 1/m2, …

o When a node is selected for expansion, skip over it with probability CVF/m



RRT* 

Two differences from RRT:
o Records the distance each vertex has traversed relative to its parent vertex
o Rewiring of the tree



RRT* 



RRT* 



RRT* 



RRT* Pseudo code



RRT* Path: Example



RRT* Path: Example

o Asymptotically optimal
o Main idea:

o Swap new point in as parent for nearby vertices who can  be reached along shorter path through 
new point than  through their original (current) parent



RRT*: Limitations

o Time?
o ~x8 times more time-consuming than RRT



RRT*

RRT

RRT*

Source: Karaman and Frazzoli



RRT*

RRT RRT*

Source: Karaman and Frazzoli



Smoothing

o Randomized motion planners tend to find not so great paths for  execution: very jagged, often much 
longer than necessary

o In practice: do smoothing before using the path

o Shortcutting:
o along the found path, pick two vertices xt1, xt2 and try to  connect them directly (skipping over all 

intermediate  vertices)
o Nonlinear optimization for optimal control

o Allows to specify an objective function that includes smoothness in state, control, small 
control inputs, etc.



DWA: Dynamic-Window Approach

o Discretize and maximize an objective function 
given by:

o 𝐺 𝑣,𝜔 = 𝜎൫

൯

𝛼. ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑣, 𝜔 +

𝛽.𝑑𝑖𝑠𝑡 𝑣, 𝜔 + 𝛾. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣,𝜔
o Heading 𝑣,𝜔  → alignment of robot with 

that of direction of target.
o Dist 𝑣,𝜔  → distance to the closest obstacle 

if the corresponding 𝑣,𝜔  were chosen
o Velocity 𝑣,𝜔  returns the ‘𝑣’
o Other planners include TEB(timed elastic 

band) local planner, learning based path 
planner, etc. 



DWA: Implementation



DWA

o Maximizing solely the clearance (dist) and velocity => no incentive to move towards goal
o Maximizing only heading, robot will not move around the obstacles
o Using all three components, robot will move around obstacles as fast as it can
o Local approaches are better for obstacle avoidance
o Low computational complexity
o Sometimes the robot gets stuck in local optimum
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