
Path Planning For
Autonomous Systems

Mukund Mitra, Pradipta Biswas

Mukund Mitra
PhD Scholar, IISc Bangalore
Contact: mukundmitra@iisc.ac.in

Pradipta Biswas
Assoc. professor, IISc Bangalore
Contact: pradipta@iisc.ac.in

Definition: Path Planning

o Finding a continuous path connecting
start and goal

o Mobile robots, unmanned aerial
vehicles, and autonomous vehicles

o safe, efficient, collision-free, and least-
cost travel paths from an origin to a
destination

Applications

o Warehouse applications

o Manufacturing

o Safety and patrolling

o Autonomous driving

Classification

o Miscellaneous:
o Coverage path planning

o Potential-field based planning

o Human-aware path planning

Path Planning

Global path
planning

𝐴∗ Dijkstra 𝑅𝑅𝑇 ∗

Local path
planning

DWA TEB AI- based
path planning

Visibility Graph

o For graph-based algorithms like 𝐴∗, Dijkstra
o Assume the robot is a point in 2D planar space
o Assume obstacles are 2D polygons.
o Create a visibility graph:

o Nodes are start point, goal point, vertices of obstacles
o Connect all visible nodes, that is, a straight line unobstructed path between any two nodes.
o Include all edges of polynomial obstacles.

o Implement any graph search algorithm like A star, Dijkstra from start node to goal node

Minkowski Sum

o What if the size of real workspace is very large?
o Do Mapping

o Robot is 3D with some volume, may collide with the obstacles
o Inflate the obstacles and then implement the algorithms, Minkowski sum

Dijkstra’s Algorithm

o A solution to the single-source shortest path
problem in graph theory

o Works on both directed and undirected graphs.
All edges must have nonnegative weights.

o Approach: Greedy
o Input: Weighted graph G={E,V} and source

vertex v∈V, such that all edge weights are
nonnegative

o Output: Shortest paths from a given source
vertex v∈V to all other vertices

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm: Application

o Traffic Information Systems are
most prominent use

o Mapping (Map Quest, Google
Maps)

o Routing Systems

𝐴∗ Algorithm

o Popular graph traversal path planning algorithm
o Similar to Dijkstra’s, except that it guides its

search towards the most promising states,
saving a significant amount of computation time

o Uses the least expensive path and expands it
using the function shown below:
o 𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

o Applications:
o Manufacturing industries
o Manipulators and mobile robots
o Social navigation

𝐴∗ Vs Dijkstra

S.N
o.

Parameters 𝑨∗ Dijkstra

1. Search algorithm Best first
search/directe
d search

Greedy best
first
search/blind
search

2. Time complexity O(n log n) O(𝑛2)

3. Heuristic function f(n) =
g(n)+h(n)

f(n) = g(n)

4. Rate of convergence Faster Slower

Motion Planning

o Problem
o Given start state 𝑋𝑠, goal state 𝑋𝐺
o Asked for: a sequence of control inputs that leads from start to goal

o Why tricky?
o Need to avoid obstacles
o For systems with underactuated dynamics: can’t simply move along any coordinate at will
o E.g., car, helicopter, airplane, but also robot manipulator hitting joint limits

Solve by Nonlinear Optimization for Control?

o Could try by, for example, the following formulation:

o Or, with constraints:

o For more complicated problems with longer horizons, often get stuck in local maxima that don’t
reach the goal

Motion Planning: Outline

o Configuration Space
o Probabilistic Roadmap

o Boundary Value Problem
o Sampling
o Collision checking

o Rapidly-exploring Random Trees (RRTs)
o Smoothing

Configuration Space (C-Space)

={x| xis aposeoftherobot}

o obstacles→ configuration spaceobstacles

Workspace Configuration Space

(2 DOF: translation only, no rotation)

free space

obstacles

Motion planning

Probabilistic Roadmap (PRM)

Space Rn forbidden space Free/feasible space

Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random

Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random

Probabilistic Roadmap (PRM)

Sampled configurations are tested for collision

Probabilistic Roadmap (PRM)

The collision-free configurations are retained as milestones

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

The collision-free links are retained as local paths to form the PRM

Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones

s

g

Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones

s
g

Probabilistic Roadmap

o Initialize set of points with xS and xG
o Randomly sample points in configuration space
o Connect nearby points if they can be reached from each other
o Find path from 𝑋𝑠 to 𝑋𝐺 in the graph

o alternatively: keep track of connected components incrementally, and declare success when
𝑋𝑠 and 𝑋𝐺 are in same connected component

Example

PRM: Challenges

o Connecting neighboring points: Generally requires solving a Boundary Value Problem:

o Collision checking:
o Often takes majority of time in applications (see Lavalle)

Typically solved without
collision checking; later
verified if valid by collision
checking

PRM’s Pros and Cons

o Pro:
o Probabilistically complete: i.e., with probability one, if run for long enough the

graph will contain a solution path if one exists

o Cons:
o Required to solve boundary value problem
o Build graph over state space but no particular focus on generating a path

Rapidly exploring Random Trees

o Basic idea:
o Build up a tree through generating “next states” in the tree by executing random controls
o However: not exactly above to ensure good coverage

Rapidly-exploring Random Trees (RRT)

o RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal state with probability 1%,
this ensures it attempts to connect to goal semi-regularly

RRT Pseudo code

RRT Path: Example

RRT Graph: Example

RRT Practicalities

o NEAREST_NEIGHBOR(x𝑟𝑎𝑛𝑑, T): need to find (approximate) nearest neighbor efficiently
o KD Trees data structure

o SELECT_INPUT(x𝑟𝑎𝑛𝑑, x𝑛𝑒𝑎𝑟)
o Two point boundary value problem

o If too hard to solve, often just select best out of a set of control sequences. This
set could be random, or some well chosen set of primitives

RRT Extension

o No obstacles, holonomic:

o With obstacles, holonomic:

o Non-holonomic: approximately (sometimes as approximate as picking best of a few
random control sequences) solve two-point boundary value problem

Growing RRT

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif

Bi-directional RRT

o Volume swept out by unidirectional RRT:

o Volume swept out by bi-directional RRT:

o Difference becomes even more pronounced in higher dimensions

xS xG

xGxS

Resolution-Complete RRT (RC-RRT)

o Issue: nearest points chosen for expansion are (too) often the ones stuck behind an obstacle

o RC-RRT solution:
o Choose a maximum number of times, m, you are willing to try to expand each node
o For each node in the tree, keep track of its Constraint Violation Frequency (CVF)
o Initialize CVF to zero when node is added to tree
o Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle):

o Increase CVF of that node by 1
o Increase CVF of its parent node by 1/m, its grandparent 1/m2, …

o When a node is selected for expansion, skip over it with probability CVF/m

RRT*

Two differences from RRT:
o Records the distance each vertex has traversed relative to its parent vertex
o Rewiring of the tree

RRT*

RRT*

RRT*

RRT* Pseudo code

RRT* Path: Example

RRT* Path: Example

o Asymptotically optimal
o Main idea:

o Swap new point in as parent for nearby vertices who can be reached along shorter path through
new point than through their original (current) parent

RRT*: Limitations

o Time?
o ~x8 times more time-consuming than RRT

RRT*

RRT

RRT*

Source: Karaman and Frazzoli

RRT*

RRT RRT*

Source: Karaman and Frazzoli

Smoothing

o Randomized motion planners tend to find not so great paths for execution: very jagged, often much
longer than necessary

o In practice: do smoothing before using the path

o Shortcutting:
o along the found path, pick two vertices xt1, xt2 and try to connect them directly (skipping over all

intermediate vertices)
o Nonlinear optimization for optimal control

o Allows to specify an objective function that includes smoothness in state, control, small
control inputs, etc.

DWA: Dynamic-Window Approach

o Discretize and maximize an objective function
given by:

o 𝐺 𝑣,𝜔 = 𝜎൫

൯

𝛼. ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑣, 𝜔 +

𝛽.𝑑𝑖𝑠𝑡 𝑣, 𝜔 + 𝛾. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣,𝜔
o Heading 𝑣,𝜔 → alignment of robot with

that of direction of target.
o Dist 𝑣,𝜔 → distance to the closest obstacle

if the corresponding 𝑣,𝜔 were chosen
o Velocity 𝑣,𝜔 returns the ‘𝑣’
o Other planners include TEB(timed elastic

band) local planner, learning based path
planner, etc.

DWA: Implementation

DWA

o Maximizing solely the clearance (dist) and velocity => no incentive to move towards goal
o Maximizing only heading, robot will not move around the obstacles
o Using all three components, robot will move around obstacles as fast as it can
o Local approaches are better for obstacle avoidance
o Low computational complexity
o Sometimes the robot gets stuck in local optimum

	Slide 1: Path Planning For Autonomous Systems
	Slide 2: Definition: Path Planning
	Slide 3: Applications
	Slide 4: Classification
	Slide 5: Visibility Graph
	Slide 6: Minkowski Sum
	Slide 7: Dijkstra’s Algorithm
	Slide 8: Dijkstra’s Algorithm
	Slide 9: Dijkstra’s Algorithm
	Slide 10: Dijkstra’s Algorithm
	Slide 11: Dijkstra’s Algorithm
	Slide 12: Dijkstra’s Algorithm
	Slide 13: Dijkstra’s Algorithm
	Slide 14: Dijkstra’s Algorithm
	Slide 15: Dijkstra’s Algorithm
	Slide 16: Dijkstra’s Algorithm
	Slide 17: Dijkstra’s Algorithm
	Slide 18: Dijkstra’s Algorithm: Application
	Slide 19: cap A. to the asterisk operator Algorithm
	Slide 20: cap A. to the asterisk operator Vs Dijkstra
	Slide 21: Motion Planning
	Slide 22: Solve by Nonlinear Optimization for Control?
	Slide 23: Motion Planning: Outline
	Slide 24: Configuration Space (C-Space)
	Slide 25: Motion planning
	Slide 26: Probabilistic Roadmap (PRM)
	Slide 27: Probabilistic Roadmap (PRM)
	Slide 28: Probabilistic Roadmap (PRM)
	Slide 29: Probabilistic Roadmap (PRM)
	Slide 30: Probabilistic Roadmap (PRM)
	Slide 31: Probabilistic Roadmap (PRM)
	Slide 32: Probabilistic Roadmap (PRM)
	Slide 33: Probabilistic Roadmap (PRM)
	Slide 34: Probabilistic Roadmap (PRM)
	Slide 35: Probabilistic Roadmap (PRM)
	Slide 36: Probabilistic Roadmap
	Slide 37: Example
	Slide 38: PRM: Challenges
	Slide 39: PRM’s Pros and Cons
	Slide 40: Rapidly exploring Random Trees
	Slide 41: Rapidly-exploring Random Trees (RRT)
	Slide 42: RRT Pseudo code
	Slide 43: RRT Path: Example
	Slide 44: RRT Graph: Example
	Slide 45: RRT Practicalities
	Slide 46: RRT Extension
	Slide 47: Growing RRT
	Slide 48: Bi-directional RRT
	Slide 49: Resolution-Complete RRT (RC-RRT)
	Slide 50: RRT*
	Slide 51: RRT*
	Slide 52: RRT*
	Slide 53: RRT*
	Slide 54: RRT* Pseudo code
	Slide 55: RRT* Path: Example
	Slide 56: RRT* Path: Example
	Slide 57: RRT*: Limitations
	Slide 58: RRT*
	Slide 59: RRT*
	Slide 60: Smoothing
	Slide 61: DWA: Dynamic-Window Approach
	Slide 62: DWA: Implementation
	Slide 63: DWA

