
Active Reinforcement Learning

24
Pradipta Biswas

Associate Professor

Indian Institute of Science

pradipta@iisc.ac.in, https://cambum.net/PB/

Difference with Passive RL

 A passive learning agent has a fixed policy that
determines its behaviour. An active agent must decide
what action to take

 An active agent requires outcome probabilities of ALL
ACTIONS rather than for a fixed policy as used in passive RL

 An active agent EXPLORES the world

 Trade off between Exploration and Exploitation
 Sticking to only known world ensures stability but may lead to sub-

optimal solution

 Exploring new opportunities lead to improve the present situation

25

Problem with Optimal Policy of an ADP Agent26

Agent learns a model not the true environment !!

Exploration Function

 Two new functions

 N(a, s) = How many times action a is executed at state s

 Exploration function f (u, n)
 Increasing in u and decreasing in n

Greed is traded off with curiosity

 f(u, n) =

where R+ is an optimistic estimate of the best possible reward
obtainable in any state and Ne is a fixed parameter

Ensures each state-action pair will be tried at least Ne times

27

R+ if n < Ne

u otherwise

Problems with TD Value Learning
 TD learns utility values in local

neighborhood instead of the wholw state
space

 We want to turn values into a (new)
policy

 Idea: learn Q-values directly

 Makes action selection model-free too!

28

a

s

s, a

s,a,s’
s’

U

Q-Learning

 Define a new function Q (a, s)

 Relationship with Utility: U(s)=maxa Q(a, s)

 Constraint Equation for Equilibrium: Q (a, S) = R(S) + γ ∑ s’ T(s, a, s’) maxa’ Q(a’, s’)

 TD Update for Utility: Uπ(s) Uπ(s) + α(R(s) + γUπ(s’)- Uπ(s))

 Q learning with TD update: Q (a, S) Q (a, S)+ α(R(S) + γ maxa’ Q(a’, s’) - Q (a, s)

29

Quality of an Action

Q - Learning30

Update after each state transition

Q – Learning implementation31

Quest for Optimal Exploration32

 GLIE – Greedy in the Limit of Infinite Exploration

 Try each action in each state an unbounded
number of times

 Gittins index is an effort to find optimal exploration
policy

 The multi-armed bandit problem is a problem in
which a fixed limited set of resources must be
allocated between competing (alternative)
choices in a way that maximizes their expected
gain, when each choice's properties are only
partially known at the time of allocation, and may
become better understood as time passes or by
allocating resources to the choice.

Bandit Problem
Can we have an optimal exploration function

33

34

35

k-Armed Bandit

 Each arm a

 Wins (reward=1) with fixed (unknown) prob. μa

 Loses (reward=0) with fixed (unknown) prob. 1-μa

 All draws are independent given μ1 … μk

 How to pull arms to maximize total reward?

1/26/2025

36

k-Armed Bandit

 Each fixed base robot / service station is a bandit

 Each mobile robot is an arm

We want to estimate the arm’s probability of winning μa
(task probability)

 Every time we pull an arm we do an ‘experiment’ 1/26/2025

37

Exploration vs. Exploitation

We need to trade off exploration (gathering data
about arm payoffs) and exploitation (making
decisions based on data already gathered)

Exploration: Pull an arm we never pulled before

Exploitation: Pull an arm 𝒂 for which we currently
have the highest estimate of 𝝁𝒂

1/26/2025

38

Stochastic k-Armed Bandit
The setting:
 Set of k choices (arms)

 Each choice a is tied to a probability distribution Pa with average
reward/payoff μa (between [0, 1])

 We play the game for T rounds

 For each round t:

 (1) We pick some arm j

 (2) We win reward 𝑿𝒕 drawn from Pj

 Note reward is independent of previous draws

 Our goal is to maximize ∑ 𝑿𝒕
𝑻
𝒕ୀ𝟏

 We don’t know μa! But every time we pull some arm a we get to learn a
bit about μa

1/26/2025

39

Epsilon-Greedy Policy

 At each time step, the agent
selects an action

 The agent follows the greedy
strategy with probability 1 –
epsilon

 The agent selects a random
action with probability epsilon

 With Q-learning, the greedy
strategy is the action a that
maximises Q given St+1

For t=1:T
Set 𝜺𝒕 = 𝑶(𝟏/𝒕)
With prob. 𝜺𝒕: Explore by picking an arm
chosen uniformly at random
With prob. 𝟏 − 𝜺𝒕: Exploit by picking an
arm with highest empirical mean payoff

Theorem [Auer et al. ‘02]
For suitable choice of 𝜺𝒕 it holds that 𝑅்
= 𝑂(𝑘 log𝑇)⇒

ோ೅

்
= 𝑂

௞ ୪୭୥ ்

்
→ 0

Issues with Epsilon Greedy

 “Not elegant”: Algorithm explicitly distinguishes between
exploration and exploitation

 Exploration makes suboptimal choices (since it picks any arm
with equal likelihood)

 Idea: When exploring/exploiting we need to compare arms

Confidence interval based selection

1/26/2025

41

Deep Q-Networks (DQN)
 It is common to use a function approximator Q(s, a; θ) to

approximate the action-value function in Q-learning

 Deep Q-Networks is Q-learning with a deep neural network function
approximator called the Q-network

 Discrete and finite set of actions A

 Uses epsilon-greedy policy to select actions

 We want the neural network to learn a non-linear hierarchy of
features or feature representation that gives accurate Q-value
estimates

 The neural network has a separate output unit for each possible
action, which gives the Q-value estimate for that action given the
input state

 The neural network is trained using mini-batch stochastic gradient
updates and experience replay

 In RL, it is necessary to manually tweak the rewards until the
desired behaviour is observed.

 A better way is to learn the rewards by observing expert
demonstrations (or policy).

 Thus IRL learns the underlying reward distribution using expert
demonstrations/trajectories (human demonstrations).

 Expert policy 𝜋∗ and transition probability matrix 𝑇 is given
from expert demonstrations (or can be obtained using
supervised learning, etc.)

 IRL is then implemented using 𝜋∗ and 𝑇 to learn the reward
distribution.

 For a robotic agent (autonomous navigation) or hand
motion (for pointing task) it is easier to estimate the initial
policy and transition matrix. Challenge is to estimate initial
policy for eye gaze movement which has high uncertainty.

 Recently sampling-based approaches being used to obtain
reward distribution using IRL for tasks with high uncertainty.

Inverse Reinforcement Learning

Implementation of
SMEIRL in 3D for
Fixed Base Robot

44

 Robot workspace: 100x200x100mm

 5x10x5 grid

 150 Expert trajectories were collected, 120 for
training, 30 for testing. Manually moving the
robotic arm through hand, end-effector
tracked by motion capture system.

 Velocity feature was used.

 SMEIRL was implemented.

 Given a start and target location, A-star was
implemented using the learned rewards.

 Robot with no sensors, learns from human
demonstrations and avoid obstacles.

Hand
Movement
Prediction

45

46

47

Summary

 Introduction to Reinforcement Learning

 Different Types

 Passive vs Active

 Model based vs Model Free

 Concept of Temporal Difference and Q Learning

 Exploration vs Exploitation – Multi Arm Bandit Problem

 Introducing advanced topics – Deep Q-Network and Inverse
Reinforcement Learning

 Demonstrations of Multi Arm Bandit in Warehouse Simulation and IRL for
Trajectory Prediction

