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Difference with Passive RL

 A passive learning agent has a fixed policy that 
determines its behaviour. An active agent must decide 
what action to take

 An active agent requires outcome probabilities of ALL 
ACTIONS rather than for a fixed policy as used in passive RL

 An active agent EXPLORES the world 

 Trade off between Exploration and Exploitation
 Sticking to only known world ensures stability but may lead to sub-

optimal solution

 Exploring new opportunities lead to improve the present situation
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Problem with Optimal Policy of an ADP Agent26

Agent learns a model not the true environment !!



Exploration Function

 Two new functions

 N(a, s) = How many times action a is executed at state s

 Exploration function f (u, n)
 Increasing in u and decreasing in n

Greed is traded off with curiosity

 f(u, n) =

where R+ is an optimistic estimate of the best possible reward 
obtainable in any state and Ne is a fixed parameter

Ensures each state-action pair will be tried at least Ne times

27

R+ if n < Ne

u        otherwise



Problems with TD Value Learning
 TD learns utility values in local 

neighborhood instead of the wholw state 
space

 We want to turn values into a (new) 
policy

 Idea: learn Q-values directly

 Makes action selection model-free too!
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Q-Learning

 Define a new function Q (a, s)

 Relationship with Utility: U(s)=maxa Q(a, s)

 Constraint Equation for Equilibrium: Q (a, S) = R(S) + γ ∑ s’ T(s, a, s’) maxa’ Q(a’, s’)

 TD Update for Utility: Uπ(s)     Uπ(s) + α(R(s) + γUπ(s’)- Uπ(s))

 Q learning with TD update: Q (a, S) Q (a, S)+ α(R(S) + γ maxa’ Q(a’, s’) - Q (a, s)

29

Quality of an Action



Q - Learning30

Update after each state transition



Q – Learning implementation31



Quest for Optimal Exploration32

 GLIE – Greedy in the Limit of Infinite Exploration

 Try each action in each state an unbounded 
number of times

 Gittins index is an effort to find optimal exploration 
policy

 The multi-armed bandit problem is a problem in 
which a fixed limited set of resources must be 
allocated between competing (alternative) 
choices in a way that maximizes their expected 
gain, when each choice's properties are only 
partially known at the time of allocation, and may 
become better understood as time passes or by 
allocating resources to the choice.



Bandit Problem
Can we have an optimal exploration function
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k-Armed Bandit

 Each arm a

 Wins (reward=1) with fixed (unknown) prob. μa

 Loses (reward=0) with fixed (unknown) prob. 1-μa

 All draws are independent given μ1 … μk

 How to pull arms to maximize total reward?

1/26/2025
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k-Armed Bandit

 Each fixed base robot / service station is a bandit

 Each mobile robot is an arm

We want to estimate the arm’s probability of winning μa
(task probability)

 Every time we pull an arm we do an ‘experiment’ 1/26/2025

37



Exploration vs. Exploitation

We need to trade off exploration (gathering data 
about arm payoffs) and exploitation (making 
decisions based on data already gathered)

Exploration: Pull an arm we never pulled before

Exploitation: Pull an arm 𝒂 for which we currently 
have the highest estimate of 𝝁𝒂

1/26/2025
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Stochastic k-Armed Bandit
The setting:
 Set of k choices (arms)

 Each choice a is tied to a probability distribution Pa with average 
reward/payoff μa (between [0, 1])

 We play the game for T rounds

 For each round t: 

 (1) We pick some arm j

 (2) We win reward 𝑿𝒕 drawn from Pj

 Note reward is independent of previous draws

 Our goal is to maximize ∑ 𝑿𝒕
𝑻
𝒕ୀ𝟏

 We don’t know μa! But every time we pull some arm a we get to learn a 
bit about μa

1/26/2025
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Epsilon-Greedy Policy

 At each time step, the agent 
selects an action

 The agent follows the greedy 
strategy with probability 1 –
epsilon

 The agent selects a random 
action with probability epsilon

 With Q-learning, the greedy 
strategy is the action a that 
maximises Q given St+1

For t=1:T
Set 𝜺𝒕 = 𝑶(𝟏/𝒕)
With prob. 𝜺𝒕: Explore by picking an arm 
chosen uniformly at random
With prob. 𝟏 − 𝜺𝒕: Exploit by picking an 
arm with highest empirical mean payoff

Theorem [Auer et al. ‘02]
For suitable choice of 𝜺𝒕 it holds that 𝑅்
= 𝑂(𝑘 log𝑇)⇒

ோ೅

்
= 𝑂

௞ ୪୭୥ ்

்
→ 0



Issues with Epsilon Greedy

 “Not elegant”: Algorithm explicitly distinguishes between 
exploration and exploitation

 Exploration makes suboptimal choices (since it picks any arm 
with equal likelihood)

 Idea: When exploring/exploiting we need to compare arms

Confidence interval based selection

1/26/2025
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Deep Q-Networks (DQN)
 It is common to use a function approximator Q(s, a; θ) to 

approximate the action-value function in Q-learning

 Deep Q-Networks is Q-learning with a deep neural network function 
approximator called the Q-network

 Discrete and finite set of actions A

 Uses epsilon-greedy policy to select actions

 We want the neural network to learn a non-linear hierarchy of 
features or feature representation that gives accurate Q-value 
estimates

 The neural network has a separate output unit for each possible 
action, which gives the Q-value estimate for that action given the 
input state

 The neural network is trained using mini-batch stochastic gradient 
updates and experience replay



 In RL, it is necessary to manually tweak the rewards until the 
desired behaviour is observed.

 A better way is to learn the rewards by observing expert 
demonstrations (or policy).

 Thus IRL learns the underlying reward distribution using expert 
demonstrations/trajectories (human demonstrations).

 Expert policy 𝜋∗ and transition probability matrix 𝑇 is given 
from expert demonstrations (or can be obtained using 
supervised learning, etc.)

 IRL is then implemented using 𝜋∗ and 𝑇 to learn the reward 
distribution.

 For a robotic agent (autonomous navigation) or hand 
motion (for pointing task) it is easier to estimate the initial 
policy and transition matrix. Challenge is to estimate initial 
policy for eye gaze movement which has high uncertainty.

 Recently sampling-based approaches being used to obtain 
reward distribution using IRL for tasks with high uncertainty. 

Inverse Reinforcement Learning



Implementation of 
SMEIRL in 3D for 
Fixed Base Robot
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 Robot workspace: 100x200x100mm

 5x10x5 grid

 150 Expert trajectories were collected, 120 for 
training, 30 for testing. Manually moving the 
robotic arm through hand, end-effector 
tracked by motion capture system.

 Velocity feature was used.

 SMEIRL was implemented. 

 Given a start and target location, A-star was 
implemented using the learned rewards.

 Robot with no sensors, learns from human 
demonstrations and avoid obstacles.



Hand 
Movement 
Prediction
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Summary

 Introduction to Reinforcement Learning

 Different Types

 Passive vs Active

 Model based vs Model Free

 Concept of Temporal Difference and Q Learning

 Exploration vs Exploitation – Multi Arm Bandit Problem

 Introducing advanced topics – Deep Q-Network and Inverse 
Reinforcement Learning

 Demonstrations of Multi Arm Bandit in Warehouse Simulation and IRL for 
Trajectory Prediction


