24

Active-Reinforcement Learning

Pradipta Biswas

Associate Professor

Indian Institute 6fScience
pradipta@iisc.ac.in, https.//cambum.nel/PB/

Difference with Passive RL

» A passive learning agent has a fixed policy that
determines its behaviour. An active agent must decide
what action to take

®» An active agent requires outcome probabilities of ALL
ACTIONS rather than for a fixed policy as used in passive RL

» An active agent EXPLORES the world
» Trade off between Exploration and Exploitation

» Sticking to only known world ensures stability but may lead to sub-
optimal solution

» Exploring new opportunities lead to improve the present situation

Problem with Optimal Policy of an ADP Agent

Agent learns a model not the frue environment !l

I Y
)

|
S =ii
7 RMS error - * | I
_; Policy loss | 3 — — ——— ‘ ‘ |
._:;_’ e ~-
g
| [|
g E R |.6284 0.4278 < R(s) <-0.0850
5 2
1%}
=0 N
= 5 J e
i ek ’ | b | -—= |-~ | - - |=
0 50 100 150 200 250 300 350 400 450 s =
Number of trials 1 2 3 4 1 2 3 4 + '
a)
¢ (b) : R(s)>0
e L e a)
Figure 21.6 Performance of a greedy ADP agent that executes the action recommended | @ (b)
by the optimal policy for the learned model. (a) RMS error ili . -
J d) B é MS error in the utility estimates averaged | J y S PR, S, U, T S . .
over the nine nonterminal squares. (b) The sub ‘ i3 Y : ‘ Figure 17.2 (a) An optimal policy for the stochastic environment with R(s)= —0.041n
R 1e suboptimal policy to which the greedy agent | the nonterminal states. (b) Optimal policies for four different ran f R(s)
A € S ges o S).

converges in this particular sequence of trials.

Exploration Function

» WO new functions
» N(q, s) = How many times action a is executed at state s

= Exploration function f (u, n)
® |[ncreasing in u and decreasing in n
» Greed is traded off with curiosity

: _{ R* ifn<N,
(v, n) = u otherwise

» where R+ is an optimistic estimate of the best possible reward
obtainable in any state and Ne is a fixed parameter

» Fnsures each state-action pair will be tried at least Ne times

Problems with TD Value Learning

» 1D learns utility values in local
neighborhood instead of the wholw state
space

» We want to turn values into a (new)
policy

w(s) = argmaxQ*(s,a)

Q*(s,a) => T(s,a, s [R(s, a,s) + ’yU*(s’)}

» |dea: learn Q-values directly
» Makes action selection model-free tool

Q-Learning

= Define a new function Q (a, s) Quality of an Action

Relafionship with Utility: U(s)=max, Q(a, s)

straint EQuation for Equilibrium: Q (a, S) =R(S) + v Y ¢ T(s, @, s') max, Q(a’, s')

D Update for Utility: UT(s) < U™(s) + a(R(s) + yU™(s’)- U™(s))

Q learning with TD update: Q (a,S) < Q (a, S)+ a(R(S) + y max, Q(a’, s’) - Q (a, s)

Q - Learning

|

Update after each state transition

temporal difference

”

Q" (st,a¢) « Q(s¢,a¢) + a ' (*: + o . max Q(s¢+1,a) = Q(St,at))
N o il S~~~ e , | SR
current value learning rate reward discount factor

: Pl current value
estimate of optimal future value

o

o

new value (tempo;;l difference target)
where 7, is the reward received when moving from the state s; to the state s;,, and v is the learning rate (0 < a < 1).
Note that Q™" (¢, a;) is the sum of three factors:
e (1 — a)Q(s¢, a;): the current value (weighted by one minus the learning rate)

e ary: the reward r; = 7(s¢, a;) to obtain if action a, is taken when in state s; (weighted by learning rate)
o arymax Q(s¢+1,a): the maximum reward that can be obtained from state s, ; (weighted by learning rate and discount factor)
a

An episode of the algorithm ends when state s; 1 is a final or terminal state. However, Q-learning can also learn in non-episodic tasks (as a result of the
property of convergent infinite series). If the discount factor is lower than 1, the action values are finite even if the problem can contain infinite loops.

For all final states s, Q (s, a) is never updated, but is set to the reward value r observed for state s. In most cases, Q(sy, a) can be taken to equal
zero.

Q - Learning implementation

function Q-LEARNING-AGENT(percept) returns an action

T , . R S !
inputs: percept, a percept indicating the current state s and reward signal 7
static: (), a table of action values index by state and action

N 44, a table of frequencies for state-action pairs
sa

o —

s, a, r, the previous state, action, and reward, initially null
if s 1s not null then do
increment N ;,[s, a]

Qla, s] — Qla,s] + a(Nsg|s, al)(r

if TERMINAL?[s’] then s, a, r < null

/ I &
max, la’, s

Qla, s])
else s, a, r — s’ argmax,, f(Qla’.s'|. N
return a

sald 4 S

Figure 21.8

An exploratory (Q-learning agent. It is an active learner that learns the value
((a, s) of each action in each situation. It uses the same exploration function f as the ex-

ploratory ADP agent, but avoids having to learn the transition model because the Q-value of
d state can be related directly to those of its neighbors.

» GLIE- Greedy in the Limit of Infinite Exploration

» Try each action in each state an unbounded
number of times

Gittins index is an effort to find optimal exploration

ulti-armed bandit problem is a problem in
which a fixed limited set of resources must be
cated between competing (alternative)

oices in a way that maximizes their expected
gain, when each choice's properties are only
partially known at the time of allocation, and may
become better understood as time passes or by
allocating resources to the choice.

Quest for Optimal Exploration

Journal of the Royal Statistical Society: Series B (Methodological)

Article @ Free Access
Bandit Processes and Dynamic Allocation Indices
J. C. Gittins

published: January 1979 | https://doi.org/10.1111/j.2517-6161.1979.tb01068.x | Citations: 294

™ POF N TOOLS « SHARE

Summary

The paper aims to give a unified account of the central concepts in recent work on bandit
processes and dynamic allocation indices; to show how these reduce some previously
intractable problems to the problem of calculating such indices; and to describe how
these calculations may be carried out. Applications to stochastic scheduling, sequential
clinical trials and a class of search problems are discussed.

;3 Bandit Problem

Can we have an optimal exploration function

o s SR Ty | PT B
Er—r g '
Wy .

Virtual obstacle avoidance &
heterogenous multi-robot coordination
in mixed reality with a human in the loop

Ajay Kumar Sandula, Dr Pradipta Biswas, Arushi Khokhar, Dr Debasish Ghose

] 13D Lab

(p RBCCPS Department
Sls

Indian Institute of Science, Bangalore

Human-In-The-Loop
Multi-Robot Systems

RBCCPS 1%

Robert Bosch Centre for A
Cyber-Physical Systems
arl

- Ajay Kumar Sandula, PhD student, I1SC Bangalore

Advisors: Dr Pradipta Biswas, Dr Debasish Ghose

N D

k—Arr_ped Bandit
5 b)

|

Ky Mo M3 My

Each arm a

» Wins (reward=1) with fixed (unknown) prob. u,

» Loses (reward=0) with fixed (unknown) prob. 1-p,
» All draws are independent given y; ... Hg

= How to pull arms to maximize total reward?

1/26/2025

k- Armed BCIﬂdIT

» Fach fixed base robot / service station is a bandit
» Fach mobile robot is an arm

» We want to estimate the arm’s probability of winning
(task probability)

» Fvery time we pull an arm we do an ‘experiment’

1/26/2025

Exploration vs. Exploitation

»\We need to frade off exploration (gathering data
about arm payoffs) and exploitation (making
decisions based on data already gathered)

» Exploration: Pull an arm we never pulled before

» Exploitation: Pull an arm a for which we currently
have the highest estimate of u,

Stochastic k-Armed Bandit
The setting:

Set of k choices (arms)

Each choice a is tied to a probability distribution P, with average
reward/payoff y, (between [0, 1])

We play the game for T rounds

o e
For each round t:

» (1) We pick some arm j

= (2) We winreward X; drawn from P;
—

» Note reward is independent of previous draws
Our goal is to maximize Y7_, X
g A Xe

We don’t know p_ ! But every time we pull some arm a we get to learn a
bit about p,

1/26/2025

Epsilon-Greedy Policy

At each time step, the agent For t=1:T

selects an action Set &, = 0(1/t)

= The agent follows the greedy With prob. &;: Explore by picking an arm
strategy with probability 1 - chosen uniformly at random

epsilon With prob. 1 — &,: Exploit by picking an

ggent selects a random arm with highest empirical mean payoff
acyon with probability epsilon

. . Theorem [Auer et al. ‘02]

ith Q-learning, the greedy For suitable choice of & it holds that RT
trategy is the acfion a that k logT
maximises Q given S.. = O(klogT) => =0 (

0, = A4 Tb/@%/,x

Issues with Epsilon Greedy

» “Not elegant”: Algorithm explicitly distinguishes between
exploration and exploitation

» Exploration makes suboptimal choices (since it picks any arm
with equal likelihood)

» |dea: When exploring/exploiting we need to compare arms
» Confidence interval based selection

1/26/2025

Deep Q-Networks (DQN)]

It is common to use a function approximator Q(s, a; 6) to
approximate the action-value function in Q-learning

Deep Q-Networks is Q-learning with a deep neural network function
approximator called the Q-network

Discrete and finite set of actions A
Uses epsilon-greedy policy to select actions

We want the neural network to learn a non-linear hierarchy of
features or feature representation that gives accurate Q-value
estimates

The neural network has a separate output unit for each possible
action, which gives the Q-value estimate for that action given the
input state

The neural network is tfrained using mini-batch stochastic gradient
updates and experience replay

Inverse Reinforcement Learning

Dynamics Probability
Model T distribution over next

states given current
: Describes desirability state and action
In RL, it is necessary to manually tweak the rewards until the of being in a state. @

esired behaviour is observed. .
Reward Reinforcement Controller/
better way is to learn the rewards by observing expert Function R 0 't-ifna;{'ggn’t . Policy m*
emonstrations (or policy). B , .
| | o g man. B[S, v'R(s)la] | PreScribes acton to
'hus IRL learns the underlying reward distribution using expert el e
demonstrations/trajectories (human demonstrations). Inverse RL:
| / . o . . Given ="and T, can we recover R?
Expert policy m* grid fransition probability matrix T is given More generally, given execution traces, can we recover R?
'rom expert dephonstrations (or can be obtained using
bupervised ledrning, etc.) Reward = 0.32 Reward = 0.34

Reward = 0.31

\' isthen i
distribution.

Fi\

plemented using n* and T to learn the reward

S

r a ropotic agent (autonomous navigation) or hand

dtiorf (for pointing task) it is easier to estimate the initial
cyjand transition matrix. Challenge is to estimate initial
for eye gaze movement which has high uncertainty.

N
N

-
-

Aeptly sampling-based approaches being used to obtain
rewQi§ distribution using IRL for tasks with high uncertainty.

=]

0 1 2 3 4 0 1 2 3 4
Reward = 0.2

(a) Initial policy from expert (b) learned reward, policy from learned reward

Implementation of
SMEIRL in 3D for
Fixed Base Robot

» Robot workspace: 100x200x100mm
» 5x10x5 grid

» |50 Expert trajectories were collected, 120 for
training, 30 for festing. Manually moving the
roboticarm through hand, end-effector
trackgd by motion capture system.

» Vefocity feature was used.

MEIRL was implemented.

Given a start and target location, A-star was
implemented using the learned rewards.

Robot with no sensors, learns from human
demonstrations and avoid obstacles.

Methodology

Sampler

Path
Collect and generation
pre-process
hand
trajectory
dataset

Calculate
expert
features (f)

from dataset

Expert
trajectories

Generate
samples
using sampler

Velocity
estimation

Expert
features (f)

Sample
trajectories

Optimal rewards Saniple Calculate
Target Siewardweiohts features (f) sampler features

prediction (f) from sample

dataset

% of Correct Prediction

Target Prediction Accuracy

100

—e~ SMEIRL
- (M .5
—e~ Quadratic Extrapolation

03 04 05 0.7

Fraction of Pointing Trajectory

Han
Movement
Prediction

Comparison of Target Predictionin VR and MR
using Inverse Reinforcement Learning

 Mukund Mitral, Preetam Pati?, Vinay Krishna Sharma?, Subin
Raj!, Partha Pratim Chakrabarti?, Pradipta Biswas®

s Worrtk companisoniofinanget

Summary

» |nfroduction to Reinforcement Learning
» Different Types
» Passive vs Active
» Model based vs Model Free
» Concept of Temporal Difference and Q Learning
» Exploration vs Exploitation — Multi Arm Bandit Problem

» |nfroducing advanced topics — Deep Q-Network and Inverse
Reinforcement Learning

» Demonstrations of Multi Arm Bandit in Warehouse Simulation and IRL for
Trajectory Prediction

