Introduction to Reinforcement Learning

Pradipta Biswas Associate Professor Indian Institute of Science pradipta@iisc.ac.in, https://cambum.net/PB/

Contents

Introduction

Passive Reinforcement Learning

- Direct Utility Estimation
- Adaptive Dynamic Programming
- Temporal Difference Learning
- Comparison

Active Reinforcement Learning

- Q-Learning
- Multi-arm Bandit Problem

Advanced Reinforcement Learning

- Deep Q-Learning
- Inverse Reinforcement Learning
- Demonstrations

Introduction

- Learning to interact with an environment
 - Robots, games, process control
 - With limited human training
 - Where the 'right thing' is not obvious
- Supervised Learning:
 - Goal: f(x) = y
 - Data: $[< x_1, y_1 >, ..., < x_n, y_n >]$
- Reinforcement Learning:
 - Goal:

Maximize $\sum_{i=1}^{\infty} Reward(State_i, Action_i)$

• Data: $Reward_i, State_{i+1} = Interact(State_i, Action_i)$

4

Supervised vs. Unsupervised Learning

Supervised learning (classification)

- Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
- New data is classified based on the training set

Unsupervised learning (clustering)

- The class labels of training data is unknown
- Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

How Reinforcement Learning is Different

- Delayed Reward
- Agent chooses training data
- Explore vs Exploit (Life long learning)
- Very different terminology (can be confusing)
 - Reward
 - Utility
 - Policy
 - State-Action Mapping

Reinforcement Learning

- Reinforcement learning:
 - Still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - ► A reward function R(s,a,s')
 - A discount factor γ (could be 1)
 - Still looking for a policy $\pi(s)$
 - New twist: don't know T or R
 - i.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Reinforcement Learning – Set Up

7

Markov property: Transition probabilities depend on state only, not on the path to the state. Markov decision problem (MDP).

Partially observable MDP (POMDP): percepts does not have enough info to identify transition probabilities.

Model-Based vs. Model-Free RL

Model based approach to RL

- learn the MDP model, or an approximation of it
- use it for policy evaluation or to find the optimal policy

Model free approach to RL

- derive the optimal policy without explicitly learning the model
- useful when model is difficult to represent and/or learn

Passive vs. Active learning

- Passive learning
 - The agent has a fixed policy and tries to learn the utilities of states by observing the world go by
 - Analogous to policy evaluation
 - Often serves as a component of active learning algorithms
 - Often inspires active learning algorithms
- Active learning
 - The agent attempts to find an optimal (or at least good) policy by acting in the world
 - Analogous to solving the underlying MDP, but without first being given the MDP model

Passive Reinforcement Learning

Passive Learning

Simplified task

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You are given a policy π(s)
- Goal: learn the state values
- … what policy evaluation did

In this case:

- Learner "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world and see what happens...

11

Model-Based Learning

- Idea:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct
- Simple empirical model learning
 - Count outcomes for each s,a
 - Normalize to give estimate of T(s,a,s')
 - Discover R(s,a,s') when we experience (s,a,s')
- Solving the MDP with the learned model
 - Iterative policy evaluation, for example

$$\mathsf{U}_{i+1}^{\pi}(s) \leftarrow \sum_{s'} \underbrace{T(s, \pi(s), s')}_{s'} [R(s, \pi(s), s') + \gamma \mathsf{U}_{i}^{\pi}(s')]$$

- transition matrix, nor
- reward function!
- Follow the policy for ¹² many epochs giving training sequences.

 $\begin{array}{c} (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,4) +1 \\ (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (3,4) +1 \\ (1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) -1 \end{array}$

- Assume that after entering +1 or -1 state the agent enters zero reward terminal state
 - So we don't bother showing those transitions

Approach 1: Direct Estimation

- Direct estimation (also called Monte Carlo)
 - Estimate U^π(s) as average total reward of epochs containing s (calculating from s to end of epoch)
- Reward to go of a state s

the sum of the (discounted) rewards from that state until a terminal state is reached

- Use observed reward to go of the state as the direct evidence of the actual expected utility of that state
- Averaging the reward-to-go samples will converge to true value at state
- Convert the problem into supervised learning problem
 - Learn / Estimate utilities from the list of utilities in training sequences
 - Can average utilities for one sequence if the same state appears multiple times

Direct Estimation

 Converge very slowly to correct utilities values (requires more sequences than perhaps necessary)

 Doesn't exploit Bellman constraints on policy values

$$U^{\pi}(s) = R(s) + \beta \sum_{s'} T(s, \pi(s), s') U^{\pi}(s')$$

 It is happy to consider value function estimates that violate this property badly.

How can we incorporate the Bellman constraints?

Approach 2: Adaptive Dynamic Programming (ADP)

- ADP is a model based approach
 - Follow the policy for awhile
 - Estimate transition model based on observations
 - Learn reward function
 - Use estimated model to compute utility of policy

$U^{\pi}(s) = R(s) + \beta \sum_{s'} T(s, a, s') U^{\pi}(s')$

learned

- How can we estimate transition model T(s,a,s')?
 - Simply the fraction of times we see s' after taking a in state s.

Adaptive DP (ADP)

Use the constraints (state transition probabilities) between states to speed learning. Solve using DP $U(i) = R(i) + \sum_{j} M_{ij}U(j)$ = value determination. No maximization over actions because agent is passive unlike in value iteration.

Too many linear equations to solve

One equation for each state \rightarrow Large state space

e.g. Backgammon: 10⁵⁰ equations in 10⁵⁰ variables

18

Approach 3: Temporal-Difference Learning

- Use the observed transitions to adjust the values of the observed states so that they agree with the constraint equations.
- Learn from every experience!
 - Update U(s) each time we experience (s,a,s',r)
 - Likely s' will contribute updates more often
- Temporal difference learning
 - Policy still fixed!

Move values toward value of whatever successor occurs: running average! sample = $R(s, \pi(s), s') + \gamma U^{\pi}(s')$

Sample of U(s):

Update to U(s):

 $\mathsf{U}^{\pi}(s) \leftarrow (1-\alpha)\mathsf{U}^{\pi}(s) + (\alpha)sample$

Same update:

 $\mathsf{U}^{\cdot\pi}(s) \leftarrow \mathsf{U}^{\cdot\pi}(s) + \alpha(sample - \mathsf{U}^{\cdot\pi}(s))$

Temporal Difference (TD) Learning

Do ADP backups on a per move basis, not for the whole state space.

$$U(i) \leftarrow U(i) + \alpha [R(i) + U(j) - U(i)]$$

Thrm: Average value of U(i) converges to the correct value.

Thrm: If α is appropriately decreased as a function of times a state is visited ($\alpha = \alpha [N[i]]$), then U(i) itself converges to the correct value

Comparing Convergence between ADP and TD

- Tradeoff: TD requires more training experience (epochs) than
- ADP but much less computation per epoch
- Choice depends on relative cost of experience vs. computation

21

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- We want to turn values into a (new) policy

22

$$\pi(s) = \arg\max_{a} Q^*(s,a)$$

$$Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \mathsf{U}^*(s') \right]$$

- Idea: learn Q-values directly
- Makes action selection model-free too!

Passive RL: Comparisons

- Monte-Carlo Direct Estimation (model free)
 - Simple to implement
 - Each update is fast
 - Does not exploit Bellman constraints
 - Converges slowly
 - Adaptive Dynamic Programming (model based)
 - Harder to implement
 - Each update is a full policy evaluation (expensive)
 - Fully exploits Bellman constraints
 - Fast convergence (in terms of updates)
- Temporal Difference Learning (model free)
 - Update speed and implementation similar to direct estimation
 - Partially exploits Bellman constraints---adjusts state to 'agree' with observed successor
 - Not all possible successors as in ADP
 - Convergence in between direct estimation and ADP