
Introduction to
Reinforcement Learning

Pradipta Biswas

Associate Professor

Indian Institute of Science

pradipta@iisc.ac.in, https://cambum.net/PB/

Contents2

IntroductionIntroduction

• Direct Utility Estimation
• Adaptive Dynamic Programming
• Temporal Difference Learning
• Comparison

Passive Reinforcement LearningPassive Reinforcement Learning

• Q-Learning
• Multi-arm Bandit Problem

Active Reinforcement LearningActive Reinforcement Learning

• Deep Q-Learning
• Inverse Reinforcement Learning
• Demonstrations

Advanced Reinforcement LearningAdvanced Reinforcement Learning

Introduction

 Learning to interact with an environment

 Robots, games, process control

 With limited human training

 Where the ‘right thing’ is not obvious

 Supervised Learning:

 Goal: 𝑓 𝑥 = 𝑦

 Data: [< 𝑥ଵ, 𝑦ଵ >, … , < 𝑥௡, 𝑦௡ >]

 Reinforcement Learning:

 Goal:

Maximize ∑ 𝑅𝑒𝑤𝑎𝑟𝑑(𝑆𝑡𝑎𝑡𝑒௜, 𝐴𝑐𝑡𝑖𝑜𝑛௜)ஶ
௜ୀଵ

 Data:
𝑅𝑒𝑤𝑎𝑟𝑑௜, 𝑆𝑡𝑎𝑡𝑒௜ାଵ = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡(𝑆𝑡𝑎𝑡𝑒௜, 𝐴𝑐𝑡𝑖𝑜𝑛௜)

Agent

Environment

A
ctionR

ew
ar

d

S
tate

3

Supervised
vs.
Unsupervised
Learning

4

Supervised learning (classification)Supervised learning (classification)
• Supervision: The training data

(observations, measurements, etc.) are
accompanied by labels indicating the
class of the observations

• New data is classified based on the training
set

Unsupervised learning (clustering)Unsupervised learning (clustering)
• The class labels of training data is unknown
• Given a set of measurements, observations,

etc. with the aim of establishing the
existence of classes or clusters in the data

How
Reinforcement
Learning is
Different

5

 Delayed Reward

 Agent chooses training data

 Explore vs Exploit (Life long learning)

 Very different terminology (can be confusing)

 Reward

 Utility

 Policy

 State-Action Mapping

Reinforcement Learning

 Reinforcement learning:

 Still assume an MDP:

 A set of states s  S

 A set of actions (per state) A

 A model T(s,a,s’)

 A reward function R(s,a,s’)

 A discount factor γ (could be 1)

 Still looking for a policy (s)

 New twist: don’t know T or R

 i.e. don’t know which states are good or what the actions do

 Must actually try actions and states out to learn

6

Reinforcement Learning – Set Up

M = 0.8 in direction you want to go
0.2 in perpendicular 0.1 left

0.1 rightPolicy: mapping from states to actions

3

2

1

1 2 3 4

+1

-1

0.705

3

2

1

1 2 3 4

+1

-1

0.812

0.762

0.868 0.912

0.660

0.655 0.611 0.388

An optimal
policy for
the
stochastic
environment:

utilities of states:

Environment Observable (accessible): percept identifies the state
Partially observable

Markov property: Transition probabilities depend on state only, not on the path to the state.
Markov decision problem (MDP).
Partially observable MDP (POMDP): percepts does not have enough info to identify transition
probabilities.

7

Model-
Based vs.
Model-Free
RL

8

Model based approach to RLModel based approach to RL
•learn the MDP model, or an

approximation of it
•use it for policy evaluation or to find

the optimal policy

Model free approach to RLModel free approach to RL
•derive the optimal policy without

explicitly learning the model
•useful when model is difficult to

represent and/or learn

9

Passive vs. Active learning

 Passive learning
 The agent has a fixed policy and tries to learn the

utilities of states by observing the world go by

 Analogous to policy evaluation

Often serves as a component of active learning
algorithms

Often inspires active learning algorithms

 Active learning
 The agent attempts to find an optimal (or at least good)

policy by acting in the world

 Analogous to solving the underlying MDP, but without
first being given the MDP model

Passive Reinforcement
Learning

Passive Learning 11

 Simplified task

 You don’t know the transitions T(s,a,s’)

 You don’t know the rewards R(s,a,s’)

 You are given a policy (s)

 Goal: learn the state values

 … what policy evaluation did

 In this case:

 Learner “along for the ride”

 No choice about what actions to take

 Just execute the policy and learn from experience

 This is NOT offline planning! You actually take actions in the world and
see what happens…

Model-Based Learning
 Idea:

 Learn the model empirically through experience
 Solve for values as if the learned model were correct

 Simple empirical model learning
Count outcomes for each s,a
 Normalize to give estimate of T(s,a,s’)
 Discover R(s,a,s’) when we experience (s,a,s’)

 Solving the MDP with the learned model
 Iterative policy evaluation, for example

12

(s)

s

s, (s)

s, (s),s’
s’

U U

13

Model Estimation

Estimate U(s)
Not given

 transition matrix, nor

 reward function!

Follow the policy for
many epochs giving training sequences.

Assume that after entering +1 or -1 state the
agent enters zero reward terminal state
So we don’t bother showing those transitions

(1,1)(1,2)(1,3)(1,2)(1,3)(2,3)(3,3) (3,4) +1
(1,1)(1,2)(1,3)(2,3)(3,3)(3,2)(3,3)(3,4) +1
(1,1)(2,1)(3,1)(3,2)(4,2) -1

Training Samples14

15

Approach 1: Direct Estimation

 Direct estimation (also called Monte Carlo)
 Estimate U(s) as average total reward of epochs containing s

(calculating from s to end of epoch)

 Reward to go of a state s

the sum of the (discounted) rewards from that state until a
terminal state is reached

 Use observed reward to go of the state as the direct
evidence of the actual expected utility of that state

 Averaging the reward-to-go samples will converge to true
value at state

Convert the problem into supervised learning problem
 Learn / Estimate utilities from the list of utilities in training sequences

Can average utilities for one sequence if the same state appears
multiple times

16

Direct Estimation

Converge very slowly to correct utilities values
(requires more sequences than perhaps
necessary)

 Doesn’t exploit Bellman constraints on policy
values

 It is happy to consider value function estimates that
violate this property badly.

𝑈గ(𝑠) = 𝑅(𝑠) + 𝛽 ෍ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)

௦ᇱ

𝑈గ(𝑠′)

How can we incorporate the Bellman constraints?

17

Approach 2: Adaptive Dynamic Programming (ADP)

 ADP is a model based approach
 Follow the policy for awhile

 Estimate transition model based on observations

 Learn reward function

 Use estimated model to compute utility of policy

 How can we estimate transition model T(s,a,s’)?
 Simply the fraction of times we see s’ after taking a in state s.

𝑈గ(𝑠) = 𝑅(𝑠) + 𝛽 ෍ 𝑇(𝑠, 𝑎, 𝑠′)

௦ᇱ

𝑈గ(𝑠′)

learned

Adaptive DP (ADP)

Use the constraints (state transition probabilities) between
states to speed learning.
Solve


j

ij jUMiRiU)()()(

= value determination.
No maximization over actions because agent is passive
unlike in value iteration.

using DP

Large state space
e.g. Backgammon: 1050 equations in 1050 variables

Too many linear equations to solve
One equation for each state

18

Approach 3: Temporal-Difference Learning

 Use the observed transitions to adjust the values of the observed states
so that they agree with the constraint equations.

 Learn from every experience!

 Update U(s) each time we experience (s,a,s’,r)

 Likely s’ will contribute updates more often

 Temporal difference learning

 Policy still fixed!

 Move values toward value of whatever successor occurs: running average!

19

(s)

s

s, (s)

s’

Sample of U(s):

Update to U(s):

Same update: U U U

U U

U

Temporal Difference (TD) Learning

Do ADP backups on a per move basis, not for the whole state
space.

)]()()([)()(iUjUiRiUiU  

Thrm: Average value of U(i) converges to the correct value.

Thrm: If  is appropriately decreased as a function of times a
state is visited (=[N[i]]), then U(i) itself converges to the
correct value

20

Comparing Convergence between ADP and TD

ADP TD

• Tradeoff: TD requires more training experience (epochs) than
ADP but much less computation per epoch

• Choice depends on relative cost of experience vs. computation

21

Problems with TD Value Learning
 TD value leaning is a model-free way to

do policy evaluation

 We want to turn values into a (new)
policy

 Idea: learn Q-values directly

 Makes action selection model-free too!

22

a

s

s, a

s,a,s’
s’

U

Passive RL: Comparisons
 Monte-Carlo Direct Estimation (model free)

 Simple to implement

 Each update is fast

 Does not exploit Bellman constraints

 Converges slowly

 Adaptive Dynamic Programming (model based)
 Harder to implement

 Each update is a full policy evaluation (expensive)

 Fully exploits Bellman constraints

 Fast convergence (in terms of updates)

 Temporal Difference Learning (model free)
 Update speed and implementation similar to direct estimation

 Partially exploits Bellman constraints---adjusts state to ‘agree’ with observed
successor

 Not all possible successors as in ADP

 Convergence in between direct estimation and ADP

23

