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Sources

 2.5. Task Space and Workspace – Modern Robotics (northwestern.edu)

 w3.cs.jmu.edu/spragunr/CS354_F22/readings/planning.pdf

 https://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-

99/robotics/definitions.html

 Configuration Space for Motion Planning, RSS Lecture 10, Prof. Seth Teller, 

MIT

 E190Q – Lecture 14 Autonomous Robot Navigation, Instructor: Chris Clark, 

Princeton University

 Robotic Motion Planning: Configuration Space Robotics Institute 16-735, 

Howie Choset, CMU

 A Modern Approach to Artificial Intelligence, Russell & Norvig

 Planning Algorithms, Steven M LaValle
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 Probe C Space to know distance from obstacles
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The Configuration Space

 The configuration space is a transformation from the physical 

space in which the robot is of finite-size into another space in 

which the robot is treated as a point. In other words, the 

configuration space is obtained by shrinking the robot to a point, 

while growing the obstacles by the size of the robot.

 The figures illustrates the concept of configuration space. P and 

Q are fixed obstacles in physical space, and R is the robot, whose 

orientation is fixed.

 Figure b shows the corresponding configuration space.

 The free space of a configuration space simply consists of the 

areas not occupied by obstacles. Any configuration within this 

space is called a free configuration.

 The free path between an initial configuration and a goal 

configuration is the path which lies completely in free space and 

does not come into contact with any obstacles.
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Task Space and Workspace

 The task space is a space in which the robot's task can be naturally 

expressed. 

 For example, if the task is to control the position of the tip of a marker on a 

board, then task space is the Euclidean plane. If the task is to control the 
position and orientation of a rigid body, then the task space is the 6-

dimensional space of rigid body configurations. One only has to know 

about the task, not the robot, to define the task space.

 The workspace is a specification of the configurations that the end-effector 

of the robot can reach, and has nothing to do with a particular task. 

 The workspace is often defined in terms of the Cartesian points that can be 

reached by the end-effector, but it is also possible to include the 
orientation. The set of positions that can be reached with all possible 

orientations is sometimes called the dexterous workspace.
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C-Space of Point Object & Robotic Arm

 The position of a single particle moving in ordinary Euclidean 3-space is 

defined by the vector q=(x,y,z)}, and therefore its configuration space is

 If the particle is attached to a rigid linkage, free to swing about the origin, it 

is effectively constrained to lie on a sphere. Its configuration space is the 

subset of coordinates in       that define points on the sphere 

 In this case, one says that the manifold Q is the sphere, i.e. 

 For a robotic arm consisting of numerous rigid linkages, the configuration 

space consists of the location of each linkage taken to be a rigid body, 

subject to the constraints of how the linkages are attached to each other, 

and their allowed range of motion. Thus, for n linkages, one might consider 

the total space 
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Configuration Space 

& Motion Planning

 To facilitate motion planning, the 

configuration space was defined as a tool 

that can be used with planning algorithms.

 A configuration q will completely define the 

state of a robot (e.g. mobile robot (x, y, θ)

 The configuration space C, is the space of all 

possible configurations of the robot.

 The free space            is the portion of the free 

space which is collision-free.

 The goal of motion planning then, is to find a 

path in F that connects the initial 

configuration qstart to the goal configuration 

qgoal

 For a robot with k total motion DOFs, C-space 

is a coordinate system with one dimension per 

DOF
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Obstacle Representation
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Minkowski Sum
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1D Case

 In Figure 4.12, both the robot A = [−1, 
2] and obstacle region O = [0, 4] are 
intervals in a one-dimensional world, 
W = R. The negation, −A, of the robot 
is shown as the interval [−2, 1]. 
Finally, by applying the Minkowski
sum to O and −A, the Cspace obstacle, 
Cobs = [−2, 5], is obtained.
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Revisiting Minkowski Sum in 2D
Dilation & Erosion
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Convex Sets13



Type of Robots

 Holonomic constraints result from physical restrictions that make it impossible for the robot to enter 
some regions of the configuration space. 

 For example, the elbow joint on a robotic arm may only have a 90 degree range of motion. 
Holonomic constraints don’t significantly complicate the path planning problem: we can simply 
extend our notion of Cfree to exclude restricted regions.

 Non-holonomic constraints don’t directly restrict which regions of the space are accessible. Instead, 
they restrict how the robot can move from one configuration to another. 

 A classic example of a non-holonomic constraint is the inability of a car to slide sideways into a 
parking spot. There is no constraint preventing the car from being in the parking spot, but the 
mechanics of the vehicle prevent it from following a straight-line path to the desired configuration. 

 Non-holonomic constraints can also arise from system dynamics: A vehicle moving at 5 miles per 
hour can easily make a 30 degree turn, while a vehicle moving at 50 miles per hour would roll over. 

 Non-holonomic constraints of this sort are referred to as kino-dynamic constraints. Non-holonomic 
constraints complicate the path planning problem and require the use of specialized algorithms.
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2D Case

 Convex polygonal obstacle O 

 Convex polygonal robot A

 Nonconvex obstacles and robots 

can be modeled as the union of 

convex parts. 

 Cobs can be considered as the 

union of convex components, 

each of which corresponds to a 

convex component of A colliding 

with a convex component of O
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Star Algorithm

Every edge from O and A is used exactly once in the construction of Cobs

Let α1, α2, . . ., αn denote the angles of the inward edge normal in 
counterclockwise order around A. 

Let β1, β2, . . ., βn denote the outward edge normals to O. 

After sorting both sets of angles in circular order around S1, Cobs can be 
constructed incrementally by using the edges that correspond to the 
sorted normals, in the order in which they are encountered.
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Star Algorithm
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The method is based on sorting normals to the edges of the polygons on the basis of angles.



Obstacle Contour
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Types of Contacts
➢ Type EV contact refers to the case in which an edge 

of A is in contact with a vertex of O. 

➢ Type EV contacts contribute to n edges of Cobs, 

once for each edge of A. 

➢ Type VE contact refers to the case in which a vertex 

of A is in contact with an edge of O. This contributes 

to m edges of Cobs.

➢ The basic principle is that the motion vector of the 

robot, as it slides around the obstacle, should be 

perpendicular to the vector normal to the surface of 

the obstacle in the VE case.

➢ In the EV case, the motion vector (considered at 

point p) should be perpendicular to the vector 
normal to the surface of the robot.
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Contour Calculation
(without rotation)

• The normal vector n does not depend on the 
configuration of A because the robot cannot 
rotate.

• The vector v, however, depends on the translation 
q = (xt, yt) of the point p.

• if the coordinates of p are (1, 2) for A(0, 0), then 
the expression for p at configuration (xt, yt) is (1 + 
xt, 2 + yt). 

• The obstacle region Cobs can be completely 
characterized by intersecting the resulting half-
planes for each of the Type EV and Type VE 
contacts. 

• This yields a convex polygon in C that has n + m 
sides
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Vector v and Normal n
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(2,0)
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(2,0)

(2,2)
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(2,0)

(2,2)(0,2)
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Θ
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Normal to Robot Plane
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(2,2)(0,2)

(-2, 1)
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(2,0)

(2,2)(0,2)

(-2, 1)

(-2, -1)
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(2,0)

(2,2)(0,2)

(-2, 1)

(-1,-2)
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(2,0)

(2,2)(0,2)

(-2, 1)

(-1,-2)
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(2,0)

(2,2)(0,2)

(-2, 1)

(-1,-2)
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Polyhedral Obstacle34

1. Type FV: A face of A and a vertex of O

2. Type VF: A vertex of A and a face of O

3. Type EE: An edge of A and an edge of O



Sampling Based Strategy

 Avoid the explicit construction of Cobs

 Conduct a search that probes the C-space with a sampling scheme

 A collision detection module handles concerns such as whether the 

models are semi-algebraic sets, 3D triangles, nonconvex polyhedra, 

and so on.

 The motion planning algorithm considers the collision detection 

module as a “black box.” This enables the development of planning 
algorithms that are independent of the particular geometric models.
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Take Away Points

What is Configuration Space

 How Obstacle is Represented

 Two-Dimensional Robot and Obstacle

 Star Algorithm 

Obstacle Contour Formulation
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