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» w3.cs.imu.edu/spragunr/CS354 F22/readings/planning.pdf
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» Configuration Space for Motion Planning, RSS Lecture 10, Prof. Seth Teller,

MIT

» E190Q - Lecture 14 Autonomous Robot Navigation, Instructor: Chris Clark,
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The Configuration Space

The configuration space is a fransformation from the physical
space in which the robot is of finite-size into another space in
which the robot is treated as a point. In other words, the
configuration space is obtained by shrinking the robot to a point,
while growing the obstacles by the size of the robot.

Q are fixed obstacles in physical space, and R is the robot, whose
origntation is fixed.

gure b shows the corresponding configuration space.

The free space of a configuration space simply consists of the
areas not occupied by obstacles. Any configuration within this
space is called a free configuration.

The free path between an initial configuration and a goal
configuration is the path which lies completely in free space and
does not come into contact with any obstacles.

() configuration space



Task Space and Workspace

The task space is a space in which the robot's task can be naturally
expressed.

For example, if the task is o control the position of the tip of a marker on a
board, then task space is the Euclidean plane. If the task is to conftrol the

sition and orientation of a rigid body, then the task space is the 6-
dimensional space of rigid body configurations. One only has to know
about the task, not the robot, to define the task space.

The workspace is a specification of the configurations that the end-effector
of the robot can reach, and has nothing to do with a particular task.

The workspace is often defined in terms of the Cartesian points that can be
reached by the end-effector, but it is also possible to include the
orientation. The set of positions that can be reached with all possible
orientations is sometimes called the dexterous workspace.



C-Space of Point Object & Robotic Arm

» The position of a single particle moving in ordinary Euclidean 3-space is
defined by the vector g=(x.y.z)}, and therefore its configuration space is Q = R?

» |f the particle is attached to arigid linkage, free to swing about the origin, it
is effectively constrained to lie on a sphere. Its configuration space is the
ubset of coordinates in R? that define points on the sphere §2

In this case, one says that the manifold Q is the sphere, i.e. Q = §?

For a robotic arm consisting of numerous rigid linkages, the configuration
space consists of the location of each linkage taken to be a rigid body,
subject to the constraints of how the linkages are attached to each other,
and their allowed range of motion. Thus, for n linkages, one might consider
the total space [R?® x SO(3)]"



)

» To facilitate motion planning, the

COnfigUFOTiOﬂ SpOCe configuration space was defined as a tool
& Motion P|Onning that can be used with planning algorithms.

» A configuration g will completely define the
state of arobot (e.g. mobile robot (x, y, 6)

§txst Cartesian » The configuration space C, is the space of all
(x,y) product of two possible configurations of the robof.
e = circles (2D

q2)

torus) » The free space F'<( is the portion of the free

(a5 . . . .
space which is collision-free.

» The goal of motion planning then, is to find a
path in F that connects the initial
configuration g+ T0 the goal configuration

CJgool

_ » [or arobot with k total motion DOFs, C-space
Topology of cghﬁguraﬁon Space is a coordinate system with one dimension per
DOF




Obstacle Representation



Minkowski Sum

In geometry, the Minkowski sum of two sets of position vectors A and B in Euclidean space is formed

by adding each vector in A to each vector in B:

A+B={a+blac A be B}

The Minkowski difference (also Minkowski subtraction, Minkowski decomposition, or geometric
d.ffference)[” is the corresponding inverse, where (A — B) produces a set that could be summed
with B to recover A. This is defined as the complement of the Minkowski sum of the complement of A

with the reflection of B about the origin.[2]

\
—B={-b|be B} ‘
C c e
A-B= (A + (_B)) The red figure is the Minkowski A
f blue and figures.
This definition allows a symmetrical relationship between the Minkowski sum and difference. sHm orbite and green Tigres A,,B'
. .. ", . 2 A =
For example, if we have two sets A and B, each consisting of three position vectors (informally, three 5
B+a

points), representing the vertices of two triangles in Rz, with coordinates

A= {(1? 0)3 (Ua 1)7 (0: _1)}

and \A 0
B = {(0: 0): (11 1): (1: _1)}

then their Minkowski sum is

A+ B = {(130)5 (2! 1)1 (25 _1): (0: 1): (1'.- 2): (15 0)1 (Uv _1)3 (110): (1: _2)}:

which comprises the vertices of a hexagon and the three interior points of that hexagon having

-2

integral coordinates. 0 1 2 3



1D Case

® |n Figure 4.12, both the robot A = [-1,
2] and obstacle region O = [0, 4] are
intervals in a one-dimensional world,
W/~ R. The negation, —A, of the robot
6 shown as the interval [-2, 1].
Finally, by applying the Minkowski
sum to O and -A, the C,, . obstacle,
C.ps = [-2, 5], is obtained.

Cobs

Figure 4.12: A one-dimensional C-space obstacle.



Revisiting Minkowski Sum in 2D
Dilation & Erosion




(o)

Convex Sefts

+ Aset Sis convex if and only if every line segment Convex Hull of a Set of Points

connecting two points in S is contained within S
« Which of these

are convex? [ N {J,/—\xﬁ
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* Intuition: shrink wrap or rubber band around points




Type of Robofts

Holonomic constraints result from physical restrictions that make it impossible for the robot to enter
some regions of the configuration space.

For example, the elbow joint on a robotic arm may only have a 90 degree range of motion.
Holonomic constraints don’t significantly complicate the path planning problem: we can simply
extend our notion of C,., to exclude restricted regions.

on-holonomic constraints don’t directly restrict which regions of the space are accessible. Instead,
they restrict how the robot can move from one configuration to another.

A classic example of a non-holonomic constraint is the inability of a car to slide sideways into a
parking spot. There is no constraint preventing the car from being in the parking spot, but the
mechanics of the vehicle prevent it from following a straight-line path to the desired configuration.

Non-holonomic constraints can also arise from system dynamics: A vehicle moving at 5 miles per
hour can easily make a 30 degree turn, while a vehicle moving at 50 miles per hour would roll over.

Non-holonomic constraints of this sort are referred to as kino-dynamic constraints. Non-holonomic
constraints complicate the path planning problem and require the use of specialized algorithms.



2D Case

» Convex polygonal obstacle O
W O » Convex polygonal robot A
®» Nonconvex obstacles and robofts
Figure 4.13: A triangular robot and a rectangular obstacle. can be modeled as the union of
convex parts.

. , - Co.bs can be considered as the
union of convex components,
each of which corresponds to a
() (b) convex component of A colliding
Figure 4.14: (a) Slide the robot around the obstacle while keeping them both in with a convex component of O

contact. (b) The edges traced out by the origin of A form C,ps.



Polygonal robot translating & rotating in
2-D workspace

configuration
space

E—— CJ

workspace
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Figure 4.4: Left: A valid path from an initial configuration q; to a goal configuration qg. Right: The
robot trajectory corresponding to the indicated path.

Figure 4.2: Determining C,ps. The bottom-right figure illustrates Cps and Cy,,, for the environment
shown in Figure 4.1.

17



(a) 2D robot arm with two degrees of freedom. Fo
this robot q = [@;,0,]".

—180 T T
—180 —90 0 90 180
6,

(c) An illustration of C,p; for the robot config
tion illustrated in 4.3b. The colors indicate cpn-
figurations that intersect with the correspondi
objects in 4.3b.

(b) An example of a possible configuration of the
arm along with a pair of obstacles. Notice that O3
is close enough to the arm to prevent the first link
one from making a full rotation.

(d) The configuration space from 4.3c represented
as a torus. The black lines are located at 8; =

180/ — 180 and 6, = 180/ — 180. We could imag-
ine creating 4.3c by cutting along these lines and
nwrapping the surface.

180

—180 | |
—180 —-90 0 90 180
B,

Figure 4.5: Left: A valid path from an initial configuration q; to a goal configuration qgs. Right: The

robot trajectory corresponding to the indicated path.
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Star Algorithm

®» Fvery edge from O and A is used exactly once in the construction of Cobs

®»|etay, a ... dndenote the angles of the inward edge normal in
counterclockwise order around A.

1, B2, . .., Bndenote the outward edge normals to O.

ter sorting both sets of angles in circular order around S Cos can be
onstructed incrementally by using the edges that correspond to the
sorted normals, in the order in which they are encountered.



Star Algorithm

The method is based on sorting normals to the edges of the polygons on the basis of angles.
By

!
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(a) (b)

Figure 4.15: (a) Take the inward edge normals of A and the outward edge normals
of @. (b) Sort the edge normals around S'. This gives the order of edges in C,ps.
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Obstacle Contour

o= = e
e - e = T -
1 u =
\ - -
% - -
' -~ -~
i - - e =
e = -
- - -
- -
- - P
o ' -~
-
3 - v .
- i

cc:bs O

(aj (b)

Figure 4.14: (a) Slide the robot around the obstacle while keeping them both in
contact. (b) The edges traced out by the origin of A form C,s.
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> Type EV contact refers to the case in which an edge

of A is in contact with a vertex of O.
ypes of Contacts

Type EV contacts contribute to n edges of Colbs,
once for each edge of A.

4 » Type VE contact refers to the case in which a vertex
\ of A is in conftact with an edge of O. This contributes
-~ to m edges of Colbos.
A © 4 7 > The basic principle is that the motion vector of the
_ robot, as it slides around the obstacle, should be
Type EV Type VE perpendicular to the vector normal to the surface of
ot o o ) g e ot s e it the obstacle in the VE case.

> In the EV case, the motion vector (considered at
point p) should be perpendicular to the vector
normal o the surface of the robot.



Contour Calculation

The normal vector n does not depend on the
configuration of A because the robot cannot
rotate.

The vector v, however, depends on the translation
q = (x, y,) of the point p.

if the coordinates of p are (1, 2) for A(O, 0), then
the expression for p at configuration (x,, y,) is (1 +
Xy 2+ V).

The obstacle region Cobs can be completely
characterized by intersecting the resulting half-
planes for each of the Type EV and Type VE
contacts.

This yields a convex polygon in Cthat has n + m
sides

Type EV Tvpe VE

Figure 4.16: Two different types of contact, ecach of which generates a different
kind of C,s edge [2801 [657].

A A

(0, 1) g2 (~1.1) (1.1)
/NLU) 0
V2 "’
as (—1,—1) (1, —1)

(—1. —l) bg {'14
Y y

Figure 4.18: Consider constructing the obstacle region for this example.



Vector v and Normal n

24



Type | Vix. | Edge | n v Halt-Plane

VE |as | bsb |[1.0] | [z — 2w {¢eClz—2<0}
1]

!
|

VE (13 b1-bo [ . [;I?t — 2.y — 2] {(} eC | Yy — 2 < [}}
[

EV bo as-ay | [1.-2] —r, 2 — ) {eelC| —xy+ 2y, —4 <0}

Figure 4.18: Consider constructing the obstacle region for this example.
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Type | Vix. | Edge | n v Half-Plane

VE a3 by-by | [1.0] r— 2, {¢elC|x—2<0}

VE a3 b1-by | [0.1] 2 — 2y —2] [ {geC|y —2<0}

EV | b as-ay | [1.-2] | [—x4,2 — yy {¢eC| —ay+ 2y, —4 <0}

Figure 4.18: Consider constructing the obstacle region for this example.
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Type | Vix. | Edge | n v Half-Plane
VE a3 E: {¢eC|x—2 <0}
VE | a3 E: {eeCly—2<0}
EV bs | {gelC| —ay+ 2y — 4 <0}
( —1.1 ) !
- -
(—1,—1)s
b3

Figure 4.18: Consider constructing the obstacle region for this example.
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Normal to Robot Plane \

ny
(0,1)
- + 06
_— 7
(=1,0) (1,0)
Ly
1
) \\ Slope of normal n4 (to the line ;)

(0,—1) (z )__ _dy_ 2
2 tan2+9 = cot(@)-Ax-1

" Normal vector n; = [1, —2](outward of the robot edge)

28



| T | e | i s | R | = | e e R e

VE as by-by e — 2,y {¢eC|x—2 <0}

f
VE s by-bo Ty — 2, Yy — 2] {q eC | Y — 2 < U}

| |
| |
EV bo a3-a1 [ —2} [—Ib 2 — -yt] {q eC | — 1+ 2y —4 < []}
VE |a; |bpbs |[-1.0] |24z —1] | {geC| —2,—2<0} \

Figure 4.18: Consider constructing the obstacle region for this example.
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VE |a1 | bobs | [-L.0] |[RF+zee—1] |{g€C| —2:—2< 0}

EV | b3 ar-as | [1,1] —T =2, —y] [{¢€C] —x4—y: — [ <0}
VE a9 ba-by [U‘ —H {It + Loy +2 {q eC | — iy — 2 < U}

EV | by ag-az | [=2,1] | [2 — x¢, —y4] {qeC |2z —y; —4 <0}

Figure 4.18: Consider constructing the obstacle region for this example.
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VE |a1 | bobs | [-L.0] |[RF+zee—1] |{g€C| —2:—2< 0}

EV | bg aj-as | [LL1] | [-1—x4,—y] [ {q€C| —ap— 9y — 1 <0}
VE |a | babs |0, =1] ||

EV by ag-as | [=2,1] | |

e+ Ly +2] | {gelC| —y —2 <0}
2—w,—u] | {a€C|2x—y—4 <0} \ \

b4
[2AN (-1,-2) '

Y

Figure 4.18: Consider constructing the obstacle region for this example.
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VE |a1 | bobs | [-L.0] |[RF+zee—1] |{g€C| —2:—2< 0}

EV | bg aj-as | [LL1] | [-1—x4,—y] [ {q€C| —ap— 9y — 1 <0}
VE |a | babs |0, =1] ||

EV by ag-as | [=2,1] | |

e+ Ly +2] | {gelC| —y —2 <0}
2 — x¢, — Y] {¢eC |2z —y — 4 <0} \ \

A F—— (2,2)
(241 y ""
( ? (1, i
(1.0) O |
- (2,0)
~R—1)s (1, -1)
4& ¢

Figure 4.18: Consider constructing the /obstacle region for this example.
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VE |a1 | bobs | [-L.0] |[RF+zee—1] |{g€C| —2:—2< 0}

EV | bs aj-as | [L1] | [=1—x4y,—w] [ {q€C| —xp— 9y — 1 <0}
VE 19 bg—bLl [U‘ —1} [

EV b4 do-Aag [—2 H [

e+ Ly +2] | {gelC| —y —2 <0}
2 — ¢, —yy {¢elC |2z —y —4 <0} \ \

Figure 4.18: Consider constructing the obstacle region for this example.
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Polyhedral Obstacle

Type FV Type VF Tvpe EE

Figure 4.20: Three different types of contact, each of which generates a different

kind of C,. face.

1. Type FV: A face of A and a vertex of O
2. Type VF: A vertex of A and a face of O
3. Type EE: An edge of A and an edge of O




Sampling Based Strategy

Sampling—Based
Geometric Collision |==—— Motion Planning Algorithm
Models | Detection | f--------- - - ——----
Discrete |  C—Space
Searching | | Sampling
] |

Avoid the explicit construction of C,

» Conduct a search that probes the C-space with a sampling scheme

» A collision detection module handles concerns such as whether the
models are semi-algebraic sets, 3D triangles, nonconvex polyhedrq,
and so on.

®» The motion planning algorithm considers the collision detection
module as a “black box.” This enables the development of planning
algorithms that are independent of the particular geometric models.
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» \What is Configuration Space
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