

Markov Decision Process

Dr Pradipta Biswas, _{PhD (Cantab)} Assistant Professor Indian Institute of Science *https://cambum.net/*

Contents

- State Space Model
- Uninformed and Informed Search
- Sequential Decision Problems
- Markov Decision Process
- Value and Policy Iteration Algorithms
- Case Studies
 - Cognitive Model
 - Robot Navigation

State-Space Model

- Initial State
- Operators: maps a state into a next state
 - alternative: successors of state
- Goal Predicate: test to see if goal achieved
- Optional:
 - cost of operators
 - cost of solution

Al Memory Card

4

T(S,A,S`) is known as State Transition Matrix

- T(S,A,S`) = Deterministic actual values => Uninformed state space search like DFS, BFS ...
- T(S,A,S`) = Deterministic estimated values => Informed state space search like A*, MA*...
- T(S,A,S`) = Probabilistic values => Markov Decision Process (MDP)
- T(S,A,S`) = Unknown => Reinforcement Learning

Uninformed Search - BFS 5 В Α D A G В С Ε Е D F G F Н Η

Uninformed Search - DFS 6 В Α D A В D Ε F F С Η G Е Η G

Informed Search - A* search

Sequential Decision Problems

- Sequential decision problems vs. episodic ones
- Fully observable environment
- Stochastic actions

Markov Decision Process (MDP)

0.1

1. S_0 . Initial state.

- T(s, a, s'). Transition Model.
 Yields a 3-D table filled with probabilities. Markovian
- 3. / R(s). Reward associated with a state. Short term reward for state

Model $M_{ij}^a \equiv P(j|i, a)$ = probability that doing a in i leads to j

Each state has a reward R(i)

- = -0.04 (small penalty) for nonterminal states
- $=\pm 1$ for terminal states

Policy, π

- A complete mapping from states to actions
- π(s). Action recommended in state s. This is the solution to the MDP.
 - π*(s). Optimal policy. Yields MEU(maximum expected utility) ofenvironment histories.

In search problems, aim is to find an optimal sequence

In MDPs, aim is to find an optimal *policy* i.e., best action for every possible state (because can't predict where one will end up)

Optimal policy and state values for the given R(i):

11 Utility Function (Long term reward for state)

- Additive. $U_h([s_0, s_1, ...]) = R(s_0) + R(s_1) + ...$
- However, there are problems because infinite state sequences can lead to +infinity or –infinity.
 - Set R_{max} , $\gamma < 1$
 - Guarantee that agent will reach goal
 - Use average reward/step as basis for comparison
- Discounted. $U_h([s_0, s_1, ...]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ... \quad 0 \le \gamma \le 1$

Value Iteration

- MEU principle $\pi^*(s) = \operatorname{argmax}_a \sum_{s'} T(s, a, s') * U(s')$
- Bellman Equation
 U(s) = R(s) + γ max _a Σ_{s'} T(s, a, s') * U(s')
- Bellman Update
 - $U_{i+1}(s) = R(s) + \gamma \max_{\alpha} \sum_{s'} T(s, \alpha, s') * U_i(s')$
- Convergence guaranteed!
- Unique solution guaranteed!

Policy Iteration

- The policy iteration algorithm works by picking a policy, then calculating the utility of each state given that policy. It then updates the policy at each state using the utilities of the successor states
- 2. Policy Evaluation. Given a policy π_i , calculate the utility of each state.
- 3. Policy Improvement. Use a one step look ahead to calculate a better policy, π_{i+1}

Bellman Update

14

• Old method. $U_{i+1}(s) = R(s) + \gamma \max_{\alpha} \sum_{s'} T(s, \alpha, s') * U_i(s')$

• New method. $U_{i+1}(s) = R(s) + \gamma \sum_{s'} T(s, \pi_i(s), s') * U_i(s')$

Run k updates for an estimation of the utilities. This is called modified policy iteration

N linear equations in N unknowns

Linear Equations in Policy Iteration

$$U(i) = R(i) + \sum_{j} M_{ij}^{P(i)} U_t(j)$$

$$u_{(1,1)} = 0.8u_{(1,2)} + 0.1u_{(1,1)} + 0.1u_{(2,1)}$$
$$u_{(1,2)} = 0.8u_{(1,3)} + 0.2u_{(1,2)}$$

Model $M_{ij}^a \equiv P(j|i,a)$ = probability that doing a in i leads to j

The Cognitive Model

17

P. Biswas and P. Robinson, Automatic Evaluation of Assistive Interfaces, Proceedings of the ACM International Conference on Intelligent User Interfaces (IUI) 2008, pp. 247-256

Assumptions for the Cognitive Model

The User Space

The Device Space

Performance

Sample Application

6	Mails		
	Write Mail	Hill	
	New	How do you do?	
	Save		
	Give Recipients		Cut
	Send Mail		
	Receive Mail		Paste
	Read Mail		
	Exit		
		1	

State Spaces

User Space	Device Space	
States		
Ready to write mail	Welcome Screen	
Letter without recipient	Notepad without recipient	
Specify recipient	Specify recipient	
Letter with recipient	Notepad with recipient	
Confirmation Message	Confirmation Message	
Actions		
Write Mail	Write Mail	
Send Mail	Send Mail	
Confirm Recipient(s)	Confirm Recipient(s)	

State Spaces

User Space		Device Space	
	States		
	Ready to write mail	Welcome Screen	
	Letter without recipient	Notepad without recipient	
	Specify recipient	Specify recipient	
	Letter with recipient	Notepad with recipient	
	Confirmation Message	Confirmation Message	
	Actions		
	Write Mail	Write Mail	
	Send Mail	Send Mail	
	Confirm Recipient(s)	Confirm Recipient(s)	
	Ready to write mail Send Mail	e Write Mail Notepad without recipient Send Mail Give Recipient	
	Confirm Recipient(s) recipient Confirmation Message	Confirm nt Confirmation Message	

Execution of the Model

	Device Space	User Space
Iteration 1		
State	Welcome Screen	Ready to write mail
Action	Write Mail	WriteMail
State	Notepad without recipient	Letter without recipient
Action	SendMail	SendMail
State	ErrorMsg	
New Action Learned	GiveRecipients	
/		
State	Specify recipient	Specify recipient
Action	ConfirmRecipient	ConfirmRecipient
State	Notepad with recipient	Letter with recipient
New Action	SendMail	
Learned		
Action	SendMail	Confirm Sending
State	Confirmation	Confirmation

Example of Learning

	Device Space	User Space
Iteration 2		
State	Welcome Screen	Ready to write mail
Action	Write Mail	WriteMail
State	Notepad without recipient	Letter without recipient
Action	GiveRecipients	GiveRecipients
State	Recipient	Recipient
Action	ConfirmRecipient	ConfirmRecipient
State	Notepad with recipient	Letter with recipient
Action	SendMail	Confirm Sending
State	Confirmation	Confirmation

Features of Cognitive Model

- Learn a new state or a new operation.
- Support the label matching principle.
- Take instruction during execution.
- Model the practice effect.
- Has user-friendly interfaces for development and execution.

Gaze Controlled Safe HRI for Users with SSMI

Vinay K Sharma, LRD Murthy, Pradipta Biswas

I³D Lab, IISc

Uncertainty Modelling

Eight possible actions of robotic agent

Uncertainty in robotic action	Intended action	Uncertainty in robotic action

Modelling uncertainty in robotic action

Proposed State Space Model & MDP

Navigation Under Uncertainty

Remembering Past Positions

 $U^{*}(s, t) = U^{*}(s, t) + \alpha U^{*}(s, t-1), 0 < \alpha < 1$

32

Multiple Obstacles

Simulation Result

Simulation Result

Eye Gaze Tracking

LRD Murthy and P. Biswas, Appearance-based Gaze Estimation using Attention and Difference Mechanism, 3rd International Workshop on Gaze Estimation and Prediction in the Wild (GAZE 2021) at CVPR 2021

Experiment Set Up

Gaze Controlled Safe HRI for Users with SSMI

 \mathbb{A}

User Study

- 12 Users (5 users with SSMI and 7 ablebodied users)
- Dobot Magician System
- Two reachability tasks for randomly positioned target
- Significant main effect of Trial Number
 - ► F(1,11)=8.648, p<0.05, η²=0.44
- Significant main effect of Participant Type
 - $F(1, 11)=106, 16, p < 0.05, \eta^2=0.906$

Task Completion Times

Take Away Points

- Modelling Uncertainty using Markov Decision Process
- Bellman Ford Update
- Value and Policy Iteration Algorithms
- Case Studies

- Cognitive Model using two parallel MDP
- Navigation of a Robotic Manipulator