Convolutional Neural Network

(A Deep Neural Network)

ABHISHEK MUKHOPADHYAY
INSTRUCTOR: DR. PRADIPTA BISWAS
I3D LABORATORY, CPDM, IISC
Image Classification

Object detection

Neural Style Transfer

Image Source: deeplearning.ai
Classical Computer Vision Pipeline

CV experts

1. Select / develop features: SURF, HoG, SIFT, RIFT, ...

2. Add on top of this Machine Learning for multi-class recognition and train classifier

Classical CV feature definition is domain-specific and time-consuming
Neural Network

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY,
Neural Network

Here x_1 and x_2 are normalized attribute value of data.

y is the output of the neuron, i.e., the class label.

x_1 and x_2 values multiplied by weight values w_1 and w_2 are input to the neuron x.

Value of x_1 is multiplied by a weight w_1 and values of x_2 is multiplied by a weight w_2.

Given that

- $w_1 = 0.5$ and $w_2 = 0.5$
- Say value of x_1 is 0.3 and value of x_2 is 0.8,

So, weighted sum is:
- $\text{sum} = w_1 \times x_1 + w_2 \times x_2 = 0.5 \times 0.3 + 0.5 \times 0.8 = 0.55$

Fig1: an artificial neuron
Why We Need Multi Layer?

Linear Separable:

Linear inseparable:
Edge Detection

How do we detect these edges

Vertical edges

Horizontal edges

Image Source: deeplearning.ai
Neural Network?

- Suppose an image is of the size 68 X 68 X 3
 - Input feature dimension then becomes 12,288

- If image size is of 720 X 720 X 3
 - Input feature dimension becomes 1,555,200

- Number of parameters will swell up to a HUGE number

- Result in more computational and memory requirements
Another Application

Digit Recognition

\[X_1, \ldots, X_n \in \{0,1\} \text{ (Black vs. White pixels)} \]

\[Y \in \{5,6\} \text{ (predict whether a digit is a 5 or a 6)} \]
The Bayes Classifier

In class, we saw that a good strategy is to predict:

$$\arg\max_Y P(Y|X_1, \ldots, X_n)$$

- (for example: what is the probability that the image represents a 5 given its pixels?)

So ... how do we compute that?
The Bayes Classifier

Use Bayes Rule!

\[P(Y | X_1, \ldots, X_n) = \frac{P(X_1, \ldots, X_n | Y)P(Y)}{P(X_1, \ldots, X_n)} \]

Why did this help? Well, we think that we might be able to specify how features are “generated” by the class label.
The Bayes Classifier

Let’s expand this for our digit recognition task:

\[
P(Y = 5|X_1, \ldots, X_n) = \frac{P(X_1, \ldots, X_n|Y = 5)P(Y = 5)}{P(X_1, \ldots, X_n|Y = 5)P(Y = 5) + P(X_1, \ldots, X_n|Y = 6)P(Y = 6)}
\]

\[
P(Y = 6|X_1, \ldots, X_n) = \frac{P(X_1, \ldots, X_n|Y = 6)P(Y = 6)}{P(X_1, \ldots, X_n|Y = 5)P(Y = 5) + P(X_1, \ldots, X_n|Y = 6)P(Y = 6)}
\]

To classify, we’ll simply compute these two probabilities and predict based on which one is greater.
Model Parameters

For the Bayes classifier, we need to “learn” two functions, the likelihood and the prior

How many parameters are required to specify the prior for our digit recognition example?
Model Parameters

How many parameters are required to specify the likelihood?
◦ (Supposing that each image is 30x30 pixels)
Drive into CNN

In a convolutional network (ConvNet), there are basically three types of layers:
1. Convolution layer
2. Pooling layer
3. Fully connected layer
A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.
Convolution

These are the network parameters to be learned.

Filter 1

\[
\begin{bmatrix}
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{bmatrix}
\]

Filter 2

\[
\begin{bmatrix}
-1 & 1 & -1 \\
-1 & 1 & -1 \\
-1 & 1 & -1
\end{bmatrix}
\]

6 x 6 image

Each filter detects a small pattern (3 x 3).

Image Source: internet
Convolution

6 x 6 image

Filter 1

\[
\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1 \\
\end{array}
\]

stride=1

Dot product

Image Source: internet
Convolution

If stride=2

Filter 1

6 x 6 image
Convolution

6 x 6 image

Filter 1

stride=1

Image Source: internet
Convolution

stride=1

6 x 6 image

Filter 2

Repeat this for each filter

Two 4 x 4 images

Forming 4 x 4 x 2 matrix

Feature Map

Image Source: internet
Convolution over Volume

Color image

Filter 1

Filter 2

Image Source: internet
Convolution v.s. Fully Connected

- **Image**: A 3x3 grid with values 1 and 0, representing an image.
- **Convolution**: A 3x3 kernel with values -1, 1, and -1, applied to the image to produce a feature map.
- **Fully-connected**: A neural network layer with input nodes $x_1, x_2, ..., x_{36}$ connected to output nodes, shown with a simplified structure.

Image Source: internet
Filter 1

6 x 6 image

fewer parameters!

Only connect to 9 inputs, not fully connected
Filter 1

6 x 6 image

Fewer parameters

Even fewer parameters

Image Source: internet
Suppose we have 10 filters applying on input (6 X 6 X 3), each of shape 3 X 3 X 3. What will be the number of parameters in that layer?

• Number of parameters for each filter = 3*3*3 = 27
• There will be a bias term for each filter, so total parameters per filter = 28
• As there are 10 filters, the total parameters for that layer = 28*10 = 280
Simple Convolutional Neural Network

- Size of feature vector: \(\frac{n+2p-f}{s} + 1 \)
- \(n \): dimension of matrix
- \(p \): size of padding
- \(f \): size of filter
- \(s \): size of stride

Image Source: deeplearning.ai
The whole CNN

Convolution → Max Pooling → Convolution → Max Pooling → Flattened

Can repeat many times

Fully Connected Feedforward network

Image Source: internet
Max Pooling

Filter 1:

```
 1  -1  -1
-1  1  -1
-1  -1  1
```

Filter 2:

```
-1  1  -1
-1  1  -1
-1  1  -1
```

Image Source: internet
Why Pooling

- Subsampling pixels will not change the object

We can subsample the pixels to make image smaller and use fewer parameters to characterize the image.
A CNN compresses a fully connected network in two ways:

• Reducing number of connections
• Shared weights on the edges
• Max pooling further reduces the complexity
Max Pooling

6 x 6 image

Conv

Max Pooling

New image but smaller

2 x 2 image
Each filter is a channel

Image Source: internet
The whole CNN

Smaller than the original image

The number of channels is the number of filters

Can repeat many times
The whole CNN

cat dog
Flattening

Flattened

Fully Connected Feedforward network

Image Source: internet
Classic Networks

1. LeNet-5
2. AlexNet
3. VGG
LeNet-5

- **Parameters:** 60k
- **Layers flow:** Conv \rightarrow Pool \rightarrow Conv \rightarrow Pool \rightarrow FC \rightarrow FC \rightarrow Output
- **Activation functions:** Sigmoid/tanh and ReLU
AlexNet

- **Parameters:** 60 million
- **Activation functions:** ReLU

Image Source: deeplearning.ai
VGG-16

- **Parameters:** 138 million
- **Pool:** MAX with stride 2
- **CONV layer:** stride 1

Image Source: deeplearning.ai
CNN in Keras

Only modified the network structure and input format (vector -> 3-D array)

model2.add(Convolution2D(25, 3, 3, input_shape=(28, 28, 1)))

How many parameters for each filter? 9

25 x 26 x 26

model2.add(MaxPooling2D((2, 2)))

25 x 13 x 13

model2.add(Convolution2D(50, 3, 3))

How many parameters for each filter? 225 = 25 x 9

50 x 11 x 11

model2.add(MaxPooling2D((2, 2)))

50 x 5 x 5

Input

Convolution

Max Pooling

Convolution

Max Pooling

Image Source: internet
Only modified the network structure and input format (vector -> 3-D array)

CNN in Keras

Input

1 x 28 x 28

Convolution

25 x 26 x 26

Max Pooling

25 x 13 x 13

Convolution

50 x 11 x 11

Max Pooling

50 x 5 x 5

Flattened

1250

Fully connected feedforward network

model2.add(Dense(output_dim=100))
model2.add(Activation('relu'))
model2.add(Dense(output_dim=10))
model2.add(Activation('softmax'))

Output

Flattened

model2.add(Flatten())

Image Source: internet
Object Detection using CNN
Classification + Localization = Detection

Object Detection is modeled as a classification problem
• We take windows of fixed sizes
• Run over input image at all the possible locations
• Feed these patches to an image classifier.
• It predicts the class of the object in the window (or background if none is present)
Problem ➡ Solution

- Resize the image at multiple scales
- Most commonly, the image is downscaled (size is reduced)
- On each of these images, a fixed size window detector is run.
- Now, all these windows are fed to a classifier to detect the object of interest
Region-based Convolutional Neural Networks (R-CNN)

- Run **Selective Search** to generate probable objects (~2k regions)
- Feed these patches to CNN, followed by SVM to predict the class of each patch.
- Optimize patches by training bounding box regression separately.
Spatial Pyramid Pooling (SPP-net)

- Calculate the CNN representation for entire image only once
- It uses spatial pooling after the last convolutional layer
- SPP layer divides a region of any arbitrary size into a constant number of bins and max pool is performed on each of the bins
- Since the number of bins remains the same, a constant size vector is produced
Fast R-CNN uses the ideas from SPP-net and RCNN.

Apply the RoI pooling layer on the extracted regions of interest to make sure all the regions are of the same size.

These regions are passed on to a fully connected network which classifies them, as well as returns the bounding boxes using softmax and linear regression layers simultaneously.
Faster R-CNN

- We take an image as input and pass it to the ConvNet which returns the feature map for that image.

- **Region Proposal Network** (lightweight CNN) is applied on these feature maps. This returns the object proposals along with their objectness score.

- A RoI pooling layer is applied on these proposals to bring down all the proposals to the same size.

- Finally, the proposals are passed to a fully connected layer which has a softmax layer and a linear regression layer at its top, to classify and output the bounding boxes for objects.
Region Proposal Network (RPN)

- RPN uses a sliding window over the feature maps.
- At each window, it generates \(k \) Anchor boxes of different shapes and sizes.
- For each anchor, RPN predicts two things:
 - First is the probability that an anchor is an object.
 - Second is the bounding box regressor for adjusting the anchors to better fit the object.
Region Proposal Network (RPN)

- We now have bounding boxes of different shapes and sizes which are passed on to the RoI pooling layer.
- It extracts fixed sized feature maps for each anchor.
- These feature maps are passed to a fully connected layer.
- It has a softmax and a linear regression layer.
 - Classifies the object.
 - Predicts the bounding boxes for the identified objects.
Summary of the object detection models

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Features</th>
<th>Prediction time / image</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN</td>
<td>Divides the image into multiple regions and then classify each region into various classes.</td>
<td>–</td>
<td>Needs a lot of regions to predict accurately and hence high computation time.</td>
</tr>
<tr>
<td>RCNN</td>
<td>Uses selective search to generate regions. Extracts around 2000 regions from each image.</td>
<td>40-50 seconds</td>
<td>High computation time as each region is passed to the CNN separately also it uses three different models for making predictions.</td>
</tr>
<tr>
<td>Fast RCNN</td>
<td>Each image is passed only once to the CNN and feature maps are extracted. Selective search is used on these maps to generate predictions. Combines all the three models used in RCNN together.</td>
<td>2 seconds</td>
<td>Selective search is slow and hence computation time is still high.</td>
</tr>
<tr>
<td>Faster RCNN</td>
<td>Replaces the selective search method with region proposal network which made the algorithm much faster.</td>
<td>0.2 seconds</td>
<td>Object proposal takes time and as there are different systems working one after the other, the performance of systems depends on how the previous system has performed.</td>
</tr>
</tbody>
</table>
Two stages and Single stage Object Detectors

Two stage Detectors

- first generates so-called region proposals — areas of the image that potentially contain an object
- Then it makes a separate prediction for each of these regions
- Examples: R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN

One stage Detectors

- These models skip the explicit region proposal stage but apply the detection directly on dense sampled areas
- Examples: Single Shot Detector (SSD), YOLO family
How does YOLO Framework Function

- Image classification and localization are applied on each grid.
- Suppose we have 3 classes. Let's say the classes are Pedestrian, Car, and Motorcycle, respectively. So, for each grid cell, the label y will be an eight-dimensional vector.

![Diagram showing YOLO workflow](deeplearning.ai)
Bounding box in details

YOLO assigns coordinates to all the grids.

Grid contains bounding box.

b_x, b_y are the x and y coordinates of the midpoint of the object with respect to this grid.

$b_h : \text{height of the bounding box} / \text{height of the grid}$

$b_w : \text{width of the bounding box} / \text{width of the grid}$

Image Source: deeplearning.ai
Intersection over Union and Non-Max Suppression

How can we decide whether the predicted bounding box is giving us a good outcome?

Non-Max Suppression

Rather than detecting an object just once, they might detect it multiple times.

\[
\text{IoU} = \frac{\text{Area of the intersection}}{\text{Area of the union}}
\]

If IoU > 0.5, we accept predicted bounding box

Image Source: deeplearning.ai
Anchor Box

what if there are multiple objects in a single grid?

midpoint of both the objects lies in the same grid

Image Source: deeplearning.ai
Anchor Box

what if there are multiple objects in a single grid?

- Since the shape of anchor box 1 is similar to the bounding box for the person, the latter will be assigned to anchor box 1 and the car will be assigned to anchor box 2.
- The output in this case, instead of $3 \times 3 \times 8$ (using a 3×3 grid and 3 classes), will be $3 \times 3 \times 16$ (since we are using 2 anchors).

Image Source: deeplearning.ai
You Only Look Once

• Training
 • 3 X 3 grid with two anchors per grid
 • 3 different object classes
 • *y labels will have a shape of 3 X 3 X 16*
 • suppose if we use 5 anchor boxes per grid
 • number of classes has been increased to 5
 • target will be 3 X 3 X 10 X 5 = 3 X 3 X 50
• An input image of shape (608, 608, 3)
• Output volume of (19, 19, 425)
• 5 is the number of anchor boxes per grid
• How many classes are there?

Answer : 80 classes