

Information Retrieval

Dr Pradipta Biswas, _{PhD (Cantab)} Assistant Professor

> Indian Institute of Science https://cambum.net/

Indexing-based IR

Main problems in IR

- Document and query indexing
 - How to best represent their contents?
- Query evaluation (or retrieval process)
 - To what extent does a document correspond to a query?
- System evaluation
 - How good is a system?
 - Are the retrieved documents relevant? (precision)
 - Are all the relevant documents retrieved? (recall)

Document indexing

- Goal = Find the important meanings and create an internal representation
- Factors to consider:
 - Accuracy to represent meanings (semantics)
 - Exhaustiveness (cover all the contents)
 - Facility for computer to manipulate
- What is the best representation of contents?
 - Char. string (char trigrams): not precise enough
 - Word: good coverage, not precise
 - Phrase: poor coverage, more precise
 - Concept: poor coverage, precise

tf*idf weighting schema

tf = term frequency

- frequency of a term/keyword in a document
- The higher the tf, the higher the importance (weight) for the doc.

df = document frequency

- no. of documents containing the term
- distribution of the term
- idf = inverse document frequency
 - the unevenness of term distribution in the corpus
 - the specificity of term to a document

The more the term is distributed evenly, the less it is specific to a document

weight(t,D) = tf(t,D) * idf(t)

Some common *tf*idf* schemes

- tf(t, D)=freq(t,D) idf(t) = log(N/n)
 tf(t, D)=log[freq(t,D)] n = #docs containing t
 tf(t, D)=log[freq(t,D)]+1 N = #docs in corpus
- tf(t, D)=freq(t,d)/Max[f(t,d)]

weight(t,D) = tf(t,D) * idf(t)

Normalization: Cosine normalization, /max, …

Document Length Normalization

 Sometimes, additional normalizations e.g. length:

Stopwords / Stoplist

- function words do not bear useful information for IR of, in, about, with, I, although, ...
- Stoplist: contain stopwords, not to be used as index
 - Prepositions
 - Articles
 - Pronouns
 - Some adverbs and adjectives
 - Some frequent words (e.g. document)
- The removal of stopwords usually improves IR effectiveness
- A few "standard" stoplists are commonly used.

Stemming

Reason:

- Different word forms may bear similar meaning (e.g. search, searching): create a "standard" representation for them
- Stemming:
 - Removing some endings of word
 - computer computes computing computed computation

comput

Porter algorithm

(Porter, M.F., 1980, An algorithm for suffix stripping, *Program*, 14(3):130-137)

- Step 1: plurals and past participles
 - SSES -> SS
 caresses -> caress
 - (*v*) ING -> motoring -> motor
- Step 2: adj->n, n->v, n->adj, ...
 - (m>o) OUSNESS -> OUS callousness -> callous
 - (m>o) ATIONAL -> ATE
 relational -> relate
- Step 3:
 - (m>o) ICATE -> IC triplicate -> triplic
- Step 4:
 - (m>1) AL -> revival -> revival
 - (m>1) ANCE -> allowance -> allow
- Step 5:
 - (m>1) E -> probate -> probat
 - (m > 1 and *d and *L) -> single letter controll -> control

Lemmatization

- transform to standard form according to syntactic category.
 - E.g. verb + $ing \rightarrow$ verb
 - $noun + s \rightarrow noun$
 - Need POS tagging
 - More accurate than stemming, but needs more resources
- crucial to choose stemming/lemmatization rules noise v.s. recognition rate
- compromise between precision and recall

Result of indexing

 Each document is represented by a set of weighted keywords (terms):

 $D_1 \rightarrow \{(t_1, w_1), (t_2, w_2), ...\}$

e.g. $D_1 \rightarrow \{(\text{comput, 0.2}), (\text{architect, 0.3}), ...\}$ $D_2 \rightarrow \{(\text{comput, 0.1}), (\text{network, 0.5}), ...\}$

Inverted file:

comput $\rightarrow \{(D_{1'}0.2), (D_{2'}0.1), ...\}$

Inverted file is used during retrieval for higher efficiency.

Retrieval

The problems underlying retrieval

- Retrieval model
 - How is a document represented with the selected keywords?
 - How are document and query representations compared to calculate a score?
- Implementation

Vector space model

Vector space = all the keywords encountered
 <t₁, t₂, t₃, ..., t_n>
 Document

$$D = a_i = weight of t_i in D$$

Query

 Q = < b₁, b₂, b₃, ..., b_n>
 b_i = weight of t_i in Q

 R(D,Q) = Sim(D,Q)

Matrix representation

Some formulas for Sim

System evaluation

- Efficiency: time, space
- Effectiveness:
 - How is a system capable of retrieving relevant documents?
 - Is a system better than another one?
- Metrics often used (together):
 - Precision = retrieved relevant docs / retrieved docs
 - Recall = retrieved relevant docs / relevant docs

An illustration of P/R calculation

Assume: 5 relevant docs.

Goal of IR

- Assumptions:
 - The goal is maximizing precision and recall simultaneously
 - The information need remains static
 - The value is in the resulting document set

Link Analysis

Importance

- Internet Surfers generally do not bother to go through the first 10 to 20 pages
- So the ordering of pages is important to compose an effective and efficient search result.

Problems

- Huge size of Web
- Exponential increase in size
- Unstructured nature of web pages
- No control on content

Hypertext Induced Topic Search

Ref: Kleinberg, Jon; "Authoritative Sources in a Hyperlinked Environment;" Proc. ACM-SIAM Symposium on Discrete Algorithms, 1998; pp. 668-677

Hubs and Authorities

HITS Iterative Algorithm

Initialize for all
$$p \in S$$
: $a_p = h_p = 1$
For i = 1 to k:
For all $p \in S$:
 $a_p = \sum_{q:q \to p} h_q$ (update auth. scores)
For all $p \in S$:
 $h_p = \sum_{q:p \to q} a_q$ (update hub scores)
For all $p \in S$: $a_p = a_p/c$ c:
For all $p \in S$: $a_p = a_p/c$ c:
For all $p \in S$: $h_p = h_p/c$ c:
 $\sum_{p \in S} (h_p / c)^2 = 1$ (normalize h)

Convergence

- Algorithm converges to a *fix-point* if iterated indefinitely.
- Define A to be the adjacency matrix for the subgraph defined by S.

• $A_{ii} = 1$ for $i \in S, j \in S$ iff $i \rightarrow j$

- Authority vector, *a*, converges to the principal eigenvector of A^TA
- Hub vector, *h*, converges to the principal eigenvector of AA^T
- In practice, 20 iterations produces fairly stable results.

Drawbacks

 Pure link based computation-textual content is ignored

Topic Drifting-Appear when hub discusses multiple topic

Page Rank

Ref: Brin, Sergey; Page, Lawrence; "The Anatomy of a Large-Scale Hypertextual Web Search Engine;" 7th Int. WWW Conf. Proceedings, Brisbane, Australia; April 1998.

PageRank

- Alternative link-analysis method used by Google (Brin & Page, 1998).
- Does not attempt to capture the distinction between hubs and authorities.
- Ranks pages just by authority.
- Applied to the entire web rather than a local neighborhood of pages surrounding the results of a query.

Random Surfer Model

- PageRank can be seen as modeling a "random surfer" that starts on a random page and then at each point:
 - With probability E(p) randomly jumps to page p.
 - Otherwise, randomly follows a link on the current page.
- R(p) models the probability that this random surfer will be on page p at any given time.
- "Jumps" are needed to prevent the random surfer from getting "trapped" in web sinks with no outgoing links.

Page Rank Algorithm

- When at a node with no out-links, the surfer invokes the teleport (jump) operation
- At any node that has outgoing links, the surfer invokes the teleport (jump) operation with probability o<α<1
- Otherwise, users undertake the standard random walk means, follow an out-link chosen uniformly at random with (1- α) probability

Page Rank Algorithm

- If a row of adjacency matrix has no 1's, then replace each element by 1/N. For all other rows proceed as follows.
- Divide each 1 in adjacency matrix by the number of 1's in its row.
- Multiply the resulting matrix by (1- α).
- Add α/N to every entry of the resulting matrix.

Whats next

- Surfer starts at any page and browse through the links with teleportation
- After a large number/iteration of surfing the probability of visiting each page 'settles down'
- It even turns independent of initial state
- It is the principal left eigen vector of the initial probability matrix (previous slide)

Speed of Convergence

- Early experiments on Google used 322 million links.
- PageRank algorithm converged (within small tolerance) in about 52 iterations.
- Number of iterations required for convergence is empirically O(log n) (where n is the number of links).
- Therefore calculation is quite efficient.

Comparison of HITS and PageRank

- HITS
 - Assembles different root set and prioritizes pages in the context of query
 - Looks forward and backward direction

- Page Rank
- Assigns initial ranking and retains them independently from queries (fast)
- In the forward direction from link to link

Take Away Points

Basic Process of Information Retrieval

- Data Preprocesing
- Tf-Idf
- Vector Space Model
- Precision & Recall
- Link Analysis
 - HITS and Page Rank
 - Calculating page rank from adjacency matrix