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� Supervised and Unsupervised Learning
� Supervised Learning

� Decision Tree

� Linear Regression – Gradient Descent

� Neural Network – Backpropagation Algorithm
� Clustering

� K-means

� K-medoid

� Hiearchical

� Cluster Validation Index
� IUI Case Studies
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� Supervised learning (classification)

� Supervision: The training data (observations, measurements, etc.) 

are accompanied by labels indicating the class of the observations

� New data is classified based on the training set

� Unsupervised learning (clustering)

� The class labels of training data is unknown

� Given a set of measurements, observations, etc. with the aim of 

establishing the existence of classes or clusters in the data

3



� What is classification? What is regression?

� Issues regarding classification and 

prediction

� Classification by decision tree induction

4



� Classification:
� predicts categorical class labels

� classifies data (constructs a model) based on the training set and the 
values (class labels) in a classifying attribute and uses it in classifying 
new data

� Regression:
� models continuous-valued functions, i.e., predicts unknown or missing 

values 

� Typical Applications
� credit approval

� target marketing

� medical diagnosis

� treatment effectiveness analysis
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� Credit approval
� A bank wants to classify its customers based on whether they are 

expected to pay back their approved loans

� The history of past customers is used to train the classifier

� The classifier provides rules, which identify potentially reliable future 
customers

� Classification rule:

▪ If age = “31...40” and income = high then credit_rating = excellent

� Future customers

▪ Paul: age = 35, income = high ⇒ excellent credit rating

▪ John: age = 20, income = medium ⇒ fair credit rating
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� Model construction: describing a set of predetermined classes

� Each tuple/sample is assumed to belong to a predefined class, as determined 

by the class label attribute

� The set of tuples used for model construction: training set

� The model is represented as classification rules, decision trees, or 

mathematical formulae

� Model usage: for classifying future or unknown objects

� Estimate accuracy of the model

▪ The known label of test samples is compared with the classified result 

from the model

▪ Accuracy rate is the percentage of test set samples that are correctly 

classified by the model

▪ Test set is independent of training set, otherwise over-fitting will occur
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Training

Data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification

Algorithms

IF rank = ‘professor’

OR years > 6

THEN tenured = ‘yes’ 

Classifier

(Model)
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Classifier

Testing

Data

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Mellisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?

Accuracy=?
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� Decision tree 

� A flow-chart-like tree structure

� Internal node denotes a test on an attribute

� Branch represents an outcome of the test

� Leaf nodes represent class labels or class distribution

� Decision tree generation consists of two phases

� Tree construction

▪ At start, all the training examples are at the root

▪ Partition examples recursively based on selected attributes

� Tree pruning

▪ Identify and remove branches that reflect noise or outliers

� Use of decision tree: Classifying an unknown sample

� Test the attribute values of the sample against the decision tree
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age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31+40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31+40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31+40 medium no excellent yes

31+40 high yes fair yes

>40 medium no excellent no
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age?

overcast

student? credit rating?

no yes fairexcellent

<=30 >40

no noyes yes

yes

30..40
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� Linear regression 

technique

� Basic but 

powerful machine 

learning 

algorithm

� Fitting a straight 

line through a set 

of points
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� Cost Function/Loss 

Function evaluates the 

performance of Machine 

Learning Algorithm. 

� Loss function computes 

the error for a single 

training example

� Cost function is the 

average of the loss 

functions for all the 

training examples
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� Here x1 and x2 are normalized attribute value of data. 

� y is the output of the neuron , i.e the class label.

� x1 and x2  values multiplied by weight values w1 and w2 are input to the neuron
x. 

� Value of x1 is multiplied by a weight w1 and values of x2 is multiplied by a 
weight w2.

� Given that

� w1 = 0.5 and w2 = 0.5
� Say value of x1 is 0.3 and value of x2 is 0.8,

� So, weighted sum is : 

� sum= w1 x x1 + w2 x x2 = 0.5 x 0.3 + 0.5 x 0.8 = 0.55

�



� The neuron receives the weighted sum as input and calculates the 
output as a function of input as follows :

� y = f(x) , where f(x) is defined as 

� f(x) = 0 { when x< 0.5 }

� f(x) = 1 { when x >= 0.5 }

� For our example, x ( weighted sum ) is 0.55,  so y = 1 , 

� That means corresponding input attribute values are classified in class 1.

� If  for another input values , x = 0.45 , then f(x) = 0, 

� so we could conclude that input values are classified to class 0.

�



� The neuron is the basic information processing unit of a NN. It 

consists of:

1 A set of links, describing the neuron inputs, with weights W1, 

W2, …, Wm

2. An adder function (linear combiner) for computing the 

weighted sum of  the inputs (real numbers):

3 Activation function :       for limiting the amplitude of the 

neuron output. 
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� Linear Separable:

� Linear inseparable:

� Solution?

yx ∧yx∨

yx∨



kO

jkw

Output nodes

Input nodes

Hidden nodes

Output Class

Input  Record :      x
i 

wij - weights

Network is fully connected

jO



� The inputs are fed simultaneously into the input 

layer.

� The weighted outputs of these units are fed  

into hidden layer.

� The weighted outputs of the last hidden layer are 

inputs to units making up the output layer.



� The units in the hidden layers and output layer are 

sometimes referred to as neurodes, due to their symbolic 

biological basis, or as output units.

� A network containing two hidden layers is called a three-

layer neural network, and so on.

� The network is feed-forward in that none of the weights 

cycles back to an input unit or to an output unit of a 

previous layer.



� Back Propagation  learns by iteratively processing a 

set of training data (samples).

� For each sample, weights are modified  to 

minimize the error between  network’s 
classification and actual classification.
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https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
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� Cross Validation (10-fold)
� Randomly divide training data set in 10 segments

� Train with 9 and test on remaining 1

� Repeat the procedure 10 times

� Training sample should be balanced
▪ Nearly equal number of all possible classes

� Leave-1-out Validation: same as above, we 
take one sample as test set and train with the 
rest
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Source

Target



Engineering Design Centre

Comparing F1 scores for different Classifiers

0.65

0.7

0.75

0.8

0.85

0.9

EyeGaze HeadTracking HandTracking

F
1
 S
c
o
re
s Discriminant Analysis

Support Vector Machine

Naive Bayes

Neural Network
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Velocity

Bearing 

Angle

Phase of 

Movement

Back Propagation Neural Network



� For every change in position of pointer in screen
� Calculate angle of movement

� Calculate velocity of movement

� Calculate acceleration of movement
� Run Neural Network with Angle, Velocity and 

Acceleration
� Check output
� If output predicts homing phase

� Find direction of movement

� Find nearest target from current location 
towards direction of movement



� Availability: In how many pointing tasks the 

algorithm makes a successful prediction.

� Accuracy: Percentage of correct prediction 

among all predictions

� Sensitivity: How quickly an algorithm can 

detect intended target
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� Existing eye trackers are 
developed for desktop 
computing environment where
� Tracker is attached below display
� Display is a flat screen

� We used eye tracker to track eyes 
on windshield

� Display was away from eye 
tracker 

� Display surface was not flat like a 
computer screen



� Compared ML systems to convert 
eye gaze coordinates to screen 
coordinates on windshield

� Set up Linear Regression and 
Backpropagation  Neural Network 
Models for
� Predicting x-coordinate in screen from 

x coordinate recorded by gaze tracker

� Predicting x-coordinate in screen from 
x and y coordinates recorded by gaze 
tracker

� Predicting y-coordinate in screen from 
y coordinate recorded by gaze tracker

� Predicting y-coordinate in screen from 
x and y coordinates recorded by gaze 
tracker

� Compared R2 and RMS error
� Neural Network model worked 

better than Linear Regression



� Transform raw gaze 
coordinates 
geometrically for 
inverted image

� Run calibration program 
to train neural net

� Filter predicted gaze 
coordinates

� Correct offset based on 
initial calibration

� Activate target nearest 
to predicted gaze 
location



� Set up HUD in a Toyota 
Etios Car

� Collected data from 9 users
� Undertook standard 

pointing and selection task 
following ISO 9241 standard

� Collected 81 pointing tasks



� Median pointing and 

selection time 2.1 secs

� Average selection time 

was 1.8 secs and 

standard deviation was 

1.1 secs
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� Finding groups of objects such that the objects in a group will 
be similar (or related) to one another and different from (or 
unrelated to) the objects in other groups

Inter-cluster 

distances are 

maximized

Intra-cluster 

distances are 

minimized
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� Cluster: a collection of data objects

� Similar to one another within the same cluster

� Dissimilar to the objects in other clusters

� Cluster analysis

� Grouping a set of data objects into clusters

� Clustering is unsupervised classification: no predefined classes 

� Clustering is used:

� As a stand-alone tool to get insight into data distribution

▪ Visualization of clusters may unveil important information

� As a preprocessing step for other algorithms

▪ Efficient indexing or compression often relies on clustering
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� Pattern Recognition

� Image Processing
� cluster images based on their visual content

� Bio-informatics

� WWW and IR
� document classification

� cluster Weblog data to discover groups of similar access patterns
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� Distance metrics are normally used to measure the similarity

or dissimilarity between two data objects

� The most popular conform to Minkowski distance:

where  i = (xi1, xi2, …, xin) and j = (xj1, xj2, …, xjn) are two n-dimensional data 

objects, and p is a positive integer

� If p = 1, L1 is the Manhattan (or city block) distance:
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� If p = 2, L2 is the Euclidean distance:

� Properties

▪ d(i,j) ≥ 0

▪ d(i,i) = 0

▪ d(i,j) = d(j,i)

▪ d(i,j) ≤ d(i,k) + d(k,j)

� Also one can use weighted distance:
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� Partitioning algorithms: Construct random partitions and then 

iteratively refine them by some criterion

� Hierarchical algorithms: Create a hierarchical decomposition of the set 

of data (or objects) using some criterion

� Density-based: based on connectivity and density functions

� Grid-based: based on a multiple-level granularity structure

� Model-based: A model is hypothesized for each of the clusters and the 

idea is to find the best fit of that model to each other
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� Partitioning method: Construct a partition of a database D of n

objects into a set of k clusters

� k-means (MacQueen’67): Each cluster is represented by the center of the 

cluster

� k-medoids or PAM (Partition around medoids) (Kaufman & 

Rousseeuw’87): Each cluster is represented by one of the objects in the 

cluster  

59



� Partitional clustering approach 
� Each cluster is associated with a centroid (center point) 
� Each point is assigned to the cluster with the closest 

centroid
� Number of clusters, K, must be specified
� The basic algorithm is very simple

60



� K-means has problems when clusters are of 

differing 

� Sizes

� Densities

� Non-spherical shapes

� K-means has problems when the data 

contains outliers. Why?
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� Find representative objects, called medoids, in clusters

� PAM (Partitioning Around Medoids, 1987)

� starts from an initial set of medoids and iteratively replaces one of the 

medoids by one of the non-medoids if it improves the total distance of 

the resulting clustering

� PAM works effectively for small data sets, but does not scale well for 

large data sets

� CLARA (Kaufmann & Rousseeuw, 1990)

� CLARANS (Ng & Han, 1994): Randomized sampling
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� Use distance matrix as clustering criteria.  This method does 

not require the number of clusters k as an input, but needs a 

termination condition 
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Decompose data objects into a 
several levels of nested 
partitioning (tree of clusters), 
called a dendrogram. 

A clustering of the data objects 
is obtained by cutting the 
dendrogram at the desired level, 
then each connected component
forms a cluster.

E.g., level 1 gives 4 clusters: 
{a,b},{c},{d},{e},
level 2 gives 3 clusters: 
{a,b},{c},{d,e}
level 3 gives 2 clusters: 
{a,b},{c,d,e}, etc.

A Dendrogram Shows How the 

Clusters are Merged Hierarchically

a b c d e

a
b

d

e

c

level 1

level 2

level 3

level 4

64



� What happens when we can not specify the 

optimum number of clusters beforehand

� Can we find the optimum number of clusters?

� Two methods can return overlapping clusters

� Fuzzy c-means

� EM Clustering algorithm
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� Place a set of cluster centres

� Assign a fuzzy membership to each data point 
depending on distance

� Compute the new centre of each class

� Termination is based on an objective function

� Returns cluster centres and membership values 
of each data point to each cluster
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� Assume data came from a set of Gaussian 

Distribution

� Assign data points to distributions and find 

Expected probability

� Update mean and std dev of distributions to 

Maximize probabilities
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1) E Step :  Evaluate responsibilities 
using the current parameters values

2) M Step : Re-estimate the 
parameters using the current 
responsibilities

3) Evaluate the log likelihood



� Numerical measures that are applied to judge various aspects 

of cluster validity, are classified into the following three types.

� External Index: Used to measure the extent to which cluster labels 

match externally supplied class labels.
▪ Entropy 

� Internal Index: Used to measure the goodness of a clustering structure 

without respect to external information. 
▪ Sum of Squared Error (SSE)

� Relative Index: Used to compare two different clusterings or clusters. 
▪ Often an external or internal index is used for this function, e.g., SSE or entropy

� Sometimes these are referred to as criteria instead of indices
� However, sometimes criterion is the general strategy and index is the numerical 

measure that implements the criterion.
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� Cluster validity indexes are 

used to evaluate the fitness of 

partitions produced by 

clustering algorithms

� Entropy values are also used to 

evaluate the fitness of 

partitions 

� XB indexing is one type of 

validity function proposed by 

Xie and Beni

� Ratio between compactness 

measure and separation 

measure
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� Classification and Clustering

� Decision tree and neural network for classification

� Linear Regression

� Cross validation

� Hierarchical & K-means clustering

� Soft Clustering 

� Cluster Validation Index

� Case studies on IUI
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