
STATE SPACE SEARCH
&

CASE STUDY ON IUI

Dr Pradipta Biswas, PhD (Cantab)

Assistant Professor
Indian Institute of Science

http://cpdm.iisc.ernet.in/PBiswas.htm

2

STATE-SPACE SEARCH
• MANY PROBLEMS IN AI TAKE THE FORM OF STATE-SPACE SEARCH.

• THE STATES MIGHT BE LEGAL BOARD CONFIGURATIONS IN A GAME, TOWNS AND
CITIES IN SOME SORT OF ROUTE MAP, COLLECTIONS OF MATHEMATICAL
PROPOSITIONS, ETC.

• THE STATE-SPACE IS THE CONFIGURATION OF THE POSSIBLE STATES AND HOW
THEY CONNECT TO EACH OTHER E.G. THE LEGAL MOVES BETWEEN STATES.

• WHEN WE DO NOT HAVE AN ALGORITHM WHICH TELLS US DEFINITIVELY HOW
TO NEGOTIATE THE STATE-SPACE WE NEED TO SEARCH THE STATE-SPACE TO
FIND AN OPTIMAL PATH FROM A START STATE TO A GOAL STATE.

• WE CAN ONLY DECIDE WHAT TO DO (OR WHERE TO GO), BY CONSIDERING THE
POSSIBLE MOVES FROM THE CURRENT STATE, AND TRYING TO LOOK AHEAD AS
FAR AS POSSIBLE. CHESS, FOR EXAMPLE, IS A VERY DIFFICULT STATE-SPACE
SEARCH PROBLEM.

STATE-SPACE MODEL

• INITIAL STATE
• OPERATORS: MAPS A STATE INTO A NEXT STATE

• ALTERNATIVE: SUCCESSORS OF STATE

• GOAL PREDICATE: TEST TO SEE IF GOAL ACHIEVED
• OPTIONAL:

• COST OF OPERATORS

• COST OF SOLUTION

WHAT YOU SHOULD KNOW

• CREATE A STATE-SPACE MODEL
• ESTIMATE NUMBER OF STATES
• IDENTIFY GOAL OR OBJECTIVE FUNCTION
• IDENTIFY OPERATORS

5

UNINFORMED SEARCH STRATEGIES
• UNINFORMED (BLIND):

• YOU HAVE NO CLUE WHETHER ONE NON-GOAL STATE IS
BETTER THAN ANY OTHER. YOUR SEARCH IS BLIND. YOU
DON’T KNOW IF YOUR CURRENT EXPLORATION IS LIKELY
TO BE FRUITFUL.

• VARIOUS BLIND STRATEGIES:

• BREADTH-FIRST SEARCH
• UNIFORM-COST SEARCH
• DEPTH-FIRST SEARCH
• ITERATIVE DEEPENING SEARCH (GENERALLY PREFERRED)
• BIDIRECTIONAL SEARCH (PREFERRED IF APPLICABLE)

6

BREADTH-FIRST SEARCH

• EXPAND SHALLOWEST
UNEXPANDED NODE

• FRONTIER (OR FRINGE):
NODES IN QUEUE TO BE
EXPLORED

• FRONTIER IS A FIRST-IN-
FIRST-OUT (FIFO) QUEUE,
I.E., NEW SUCCESSORS GO
AT END OF THE QUEUE.

• GOAL-TEST WHEN
INSERTED.

Initial state = A
Is A a goal state?

Put A at end of queue.
frontier = [A]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black
nodes

• EXPAND
SHALLOWEST
UNEXPANDED NODE

• FRONTIER IS A FIFO
QUEUE, I.E., NEW
SUCCESSORS GO AT
END

7

BREADTH-FIRST SEARCH

Expand A to B, C.
Is B or C a goal state?

Put B, C at end of queue.
frontier = [B,C]

8

BREADTH-FIRST SEARCH

• EXPAND SHALLOWEST
UNEXPANDED NODE

• FRONTIER IS A FIFO QUEUE,
I.E., NEW SUCCESSORS GO
AT END

Expand B to D, E
Is D or E a goal state?

Put D, E at end of queue
frontier=[C,D,E]

9

BREADTH-FIRST SEARCH

• EXPAND SHALLOWEST UNEXPANDED
NODE

• FRONTIER IS A FIFO QUEUE, I.E., NEW
SUCCESSORS GO AT END

Expand C to F, G.
Is F or G a goal state?

Put F, G at end of queue.
frontier = [D,E,F,G]

10

BREADTH-FIRST SEARCH

• EXPAND SHALLOWEST
UNEXPANDED NODE

• FRONTIER IS A FIFO QUEUE,
I.E., NEW SUCCESSORS GO AT
END

Expand D to no children.
Forget D.

frontier = [E,F,G]

11

BREADTH-FIRST SEARCH

• EXPAND SHALLOWEST
UNEXPANDED NODE

• FRONTIER IS A FIFO QUEUE, I.E.,
NEW SUCCESSORS GO AT END

Expand E to no children.
Forget B,E.

frontier = [F,G]

12

PROPERTIES OF BREADTH-FIRST
SEARCH
• COMPLETE? YES, IT ALWAYS REACHES A GOAL (IF B IS FINITE)
• TIME? 1+B+B2+B3+… + BD = O(BD)
 (THIS IS THE NUMBER OF NODES WE GENERATE)
• SPACE? O(BD) (KEEPS EVERY NODE IN MEMORY,
 EITHER IN FRINGE OR ON A PATH TO FRINGE).
• OPTIMAL? NO, FOR GENERAL COST FUNCTIONS.

YES, IF COST IS A NON-DECREASING FUNCTION ONLY OF
DEPTH.
• WITH F(D) ≥ F(D-1), E.G., STEP-COST = CONSTANT:

• ALL OPTIMAL GOAL NODES OCCUR ON THE SAME LEVEL
• OPTIMAL GOAL NODES ARE ALWAYS SHALLOWER THAN NON-

OPTIMAL GOALS
• AN OPTIMAL GOAL WILL BE FOUND BEFORE ANY NON-OPTIMAL

GOAL

• SPACE IS THE BIGGER PROBLEM (MORE THAN TIME)

13

DEPTH-FIRST SEARCH

• EXPAND DEEPEST
UNEXPANDED NODE

• FRONTIER = LAST IN FIRST
OUT (LIFO) QUEUE, I.E., NEW
SUCCESSORS GO AT THE
FRONT OF THE QUEUE.

• GOAL-TEST WHEN INSERTED.

Initial state = A
Is A a goal state?

Put A at front of queue.
frontier = [A]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black
nodes

14

DEPTH-FIRST SEARCH

• EXPAND DEEPEST
UNEXPANDED NODE
• FRONTIER = LIFO

QUEUE, I.E., PUT
SUCCESSORS AT
FRONT

Expand A to B, C.
Is B or C a goal state?

Put B, C at front of queue.
frontier = [B,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black
nodes

15

DEPTH-FIRST SEARCH

• EXPAND DEEPEST
UNEXPANDED NODE
• FRONTIER = LIFO

QUEUE, I.E., PUT
SUCCESSORS AT
FRONT

Expand B to D, E.
Is D or E a goal state?

Put D, E at front of queue.
frontier = [D,E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black
nodes

16

DEPTH-FIRST SEARCH

• EXPAND DEEPEST
UNEXPANDED NODE
• FRONTIER = LIFO QUEUE,

I.E., PUT SUCCESSORS AT
FRONT

Expand D to H, I.
Is H or I a goal state?

Put H, I at front of queue.
frontier = [H,I,E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black
nodes

17

DEPTH-FIRST SEARCH

• EXPAND DEEPEST
UNEXPANDED NODE
• FRONTIER = LIFO QUEUE,

I.E., PUT SUCCESSORS AT
FRONT

Expand H to no children.
Forget H.

frontier = [I,E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black
nodes

18

DEPTH-FIRST SEARCH

• EXPAND DEEPEST
UNEXPANDED NODE
• FRONTIER = LIFO QUEUE,

I.E., PUT SUCCESSORS AT
FRONT

Expand I to no children.
Forget D, I.

frontier = [E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black
nodes

19

DEPTH-FIRST SEARCH

• EXPAND DEEPEST
UNEXPANDED NODE
• FRONTIER = LIFO QUEUE,

I.E., PUT SUCCESSORS AT
FRONT

Expand E to J, K.
Is J or K a goal state?

Put J, K at front of queue.
frontier = [J,K,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black
nodes

20

DEPTH-FIRST SEARCH

• EXPAND DEEPEST
UNEXPANDED NODE
• FRONTIER = LIFO QUEUE,

I.E., PUT SUCCESSORS AT
FRONT

Expand I to no children.
Forget D, I.

frontier = [E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black
nodes

21

DEPTH-FIRST SEARCH

• EXPAND DEEPEST
UNEXPANDED NODE
• FRONTIER = LIFO QUEUE,

I.E., PUT SUCCESSORS AT
FRONT

Expand K to no children.
Forget B, E, K.

frontier = [C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black
nodes

22

DEPTH-FIRST SEARCH

• EXPAND DEEPEST
UNEXPANDED
NODE
• FRONTIER = LIFO

QUEUE, I.E., PUT
SUCCESSORS AT
FRONT

Expand C to F, G.
Is F or G a goal state?

Put F, G at front of queue.
frontier = [F,G]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black
nodes

23

PROPERTIES OF DEPTH-FIRST SEARCH
• COMPLETE? NO: FAILS IN LOOPS/INFINITE-DEPTH SPACES
• CAN MODIFY TO AVOID LOOPS/REPEATED STATES ALONG PATH

• CHECK IF CURRENT NODES OCCURRED BEFORE ON PATH TO ROOT

• CAN USE GRAPH SEARCH (REMEMBER ALL NODES EVER SEEN)
• PROBLEM WITH GRAPH SEARCH: SPACE IS EXPONENTIAL, NOT LINEAR

• STILL FAILS IN INFINITE-DEPTH SPACES (MAY MISS GOAL ENTIRELY)

• TIME? O(BM) WITH M =MAXIMUM DEPTH OF SPACE
• TERRIBLE IF M IS MUCH LARGER THAN D
• IF SOLUTIONS ARE DENSE, MAY BE MUCH FASTER THAN BFS

• SPACE? O(BM), I.E., LINEAR SPACE!
• REMEMBER A SINGLE PATH + EXPANDED UNEXPLORED NODES

• OPTIMAL? NO: IT MAY FIND A NON-OPTIMAL GOAL FIRST

24

DEPTH-FIRST VS. BREADTH-FIRST

ADVANTAGES OF DEPTH-FIRST:

• NEEDS RELATIVELY SMALL
MEMORY FOR STORING THE
STATE-SPACE.

DISADVANTAGES OF DEPTH-
FIRST:

• CAN SOMETIMES FAIL TO FIND A
SOLUTION;

• NOT GUARANTEED TO FIND AN
OPTIMAL SOLUTION;

• CAN TAKE A LOT LONGER TO
FIND A SOLUTION.

ADVANTAGES OF BREADTH-
FIRST:

• GUARANTEED TO FIND A
SOLUTION (IF ONE EXISTS);

• DEPENDING ON THE PROBLEM,
CAN BE GUARANTEED TO FIND
AN OPTIMAL SOLUTION.

DISADVANTAGES OF BREADTH-
FIRST:

• NEEDS A LOT OF MEMORY FOR
STORING THE STATE SPACE IF
THE SEARCH SPACE HAS A HIGH
BRANCHING FACTOR.

25

ITERATIVE DEEPENING SEARCH

• To avoid the infinite depth problem of DFS,
 only search until depth L,

i.e., we don’t expand nodes beyond depth L.
  Depth-Limited Search

• What if solution is deeper than L?  Increase L iteratively.
  Iterative Deepening Search

• This inherits the memory advantage of Depth-first search

• Better in terms of space complexity than Breadth-first search.

26

ITERATIVE DEEPENING SEARCH L=0

27

ITERATIVE DEEPENING SEARCH L=1

28

ITERATIVE DEEPENING SEARCH L=2

29

ITERATIVE DEEPENING SEARCH L=3

30

BIDIRECTIONAL SEARCH

• IDEA
• SIMULTANEOUSLY SEARCH FORWARD FROM S AND BACKWARDS FROM G
• STOP WHEN BOTH “MEET IN THE MIDDLE”
• NEED TO KEEP TRACK OF THE INTERSECTION OF 2 OPEN SETS OF NODES

• WHAT DOES SEARCHING BACKWARDS FROM G MEAN
• NEED A WAY TO SPECIFY THE PREDECESSORS OF G

• THIS CAN BE DIFFICULT,

• E.G., PREDECESSORS OF CHECKMATE IN CHESS?

• WHICH TO TAKE IF THERE ARE MULTIPLE GOAL STATES?
• WHERE TO START IF THERE IS ONLY A GOAL TEST, NO EXPLICIT LIST?

INFORMED SEARCH STRATEGIES

USE HEURISTIC KNOWLEDGE TO INCREAESE EFFICIENCY OF SEARCH:
• SELECT WHICH NODE TO EXPAND NEXT DURING SEARCH
• WHILE EXPANDING A NODE DECIDE WHICH SUCCESSORS TO GENERATE

AND WHICH TO IGNORE
• REMOVE FROM THE SEARCH SPACE SOME NODES THAT HAVE

PREVIOUSLY BEEN GENERATED – PRUNE THE SEARCH SPACE

BEST-FIRST SEARCH

• EVALUATE THE INFORMATION THAT CAN BE OBTAINED BY EXPANDING A
NODE AND ITS IMPORTANCE IN GUIDING THE SEARCH

• THE QUALITY OF A NODE IS ESTIMATED BY THE HEURISTIC SEARCH
FUNCTION W(N) FOR NODE N

• GREEDY STRATEGY – GO FOR THE BEST

ROMANIA WITH STRAIGHT-LINE DISTANCE

GREEDY BEST-FIRST SEARCH
(OFTEN CALLED JUST “BEST-FIRST”)

• H(N) = ESTIMATE OF COST FROM N TO GOAL
• E.G., H(N) = STRAIGHT-LINE DISTANCE FROM N TO

BUCHAREST

• GREEDY BEST-FIRST SEARCH EXPANDS THE NODE THAT
APPEARS TO BE CLOSEST TO GOAL.
• PRIORITY QUEUE SORT FUNCTION = H(N)

GREEDY BEST-FIRST SEARCH EXAMPLE

GREEDY BEST-FIRST SEARCH EXAMPLE

GREEDY BEST-FIRST SEARCH EXAMPLE

GREEDY BEST-FIRST SEARCH EXAMPLE

OPTIMAL PATH

PROPERTIES OF GREEDY BEST-FIRST SEARCH

 COMPLETE?
 TREE VERSION CAN GET STUCK IN LOOPS.
 GRAPH VERSION IS COMPLETE IN FINITE SPACES.

 TIME? O(BM)
 A GOOD HEURISTIC CAN GIVE DRAMATIC IMPROVEMENT

 SPACE? O(BM)
 KEEPS ALL NODES IN MEMORY

 OPTIMAL? NO

 E.G., ARAD  SIBIU  RIMNICU VILCEA  PITESTI  BUCHAREST IS
SHORTER!

A* SEARCH

• IDEA: AVOID PATHS THAT ARE ALREADY EXPENSIVE
• GENERALLY THE PREFERRED SIMPLE HEURISTIC SEARCH
• OPTIMAL IF HEURISTIC IS: ADMISSIBLE(TREE)/CONSISTENT(GRAPH)

• EVALUATION FUNCTION F(N) = G(N) + H(N)
• G(N) = KNOWN PATH COST SO FAR TO NODE N.
• H(N) = ESTIMATE OF (OPTIMAL) COST TO GOAL FROM NODE N.
• F(N) = G(N)+H(N)

 = ESTIMATE OF TOTAL COST TO GOAL THROUGH NODE N.

• PRIORITY QUEUE SORT FUNCTION = F(N)

Components of A*

S i

S

S f

g(S)

h(S)

f(S)

A* SEARCH EXAMPLE

A* SEARCH EXAMPLE

A* SEARCH EXAMPLE

A* SEARCH EXAMPLE

A* SEARCH EXAMPLE

A* SEARCH EXAMPLE

CONTOURS OF A* SEARCH

• A* EXPANDS NODES IN ORDER
OF INCREASING F VALUE

• GRADUALLY ADDS "F-
CONTOURS" OF NODES

• CONTOUR I HAS ALL NODES
WITH F=FI, WHERE FI < FI+1

PROPERTIES OF A*

• COMPLETE? YES
(UNLESS THERE ARE INFINITELY MANY NODES WITH F ≤ F(G);
CAN’T HAPPEN IF STEP-COST  Ε > 0)

• TIME/SPACE? EXPONENTIAL O(BD)
 EXCEPT IF:

• OPTIMAL? YES
(WITH: TREE-SEARCH, ADMISSIBLE HEURISTIC;
GRAPH-SEARCH, CONSISTENT HEURISTIC)

• OPTIMALLY EFFICIENT? YES
(NO OPTIMAL ALGORITHM WITH SAME HEURISTIC IS
GUARANTEED TO EXPAND FEWER NODES)

* *| () () | (log ())h n h n O h n 

MULTIMODAL HUD FOR AUTO UI

CONTEXT

ISSUES WITH DASHBOARD

• DRIVERS TAKE EYES OFF
FROM ROAD WHILE
OPERATING DASHBOARD

• DASHBOARD REQUIRES
PHYSICAL TOUCH

STATE OF THE ART

• DIRECT VOICE INPUT

• GESTURE
RECOGNITION
SYSTEM

• HAND/FINGER
MOVEMENT TRACKER

EXISTING PROBLEM

• ACCURACY OF DVI CHANGES FOR
DIFFERENT LANGUAGES AND
AFFECTIVE STATE

• NEED TO REMEMBER A SET OF
GESTURES OR SCREEN SEQUENCE

• INTELLIGENT PREDICTION
ALGORITHM CAN NOT IMPROVE
LATENCY IN INFRARED SENSOR

EYE MOVEMENT

53

EYE GAZE CONTROLLED PROJECTED DISPLAY

IMPROVING GAZE TRACKING – HOT SPOTS

P. Biswas, Interactive Gaze Controlled Projected Display, Patent Application No.: 201641037828

STATE SPACE SEARCH

• A STATE SPACE CONSISTS OF
• A (POSSIBLY INFINITE) SET OF

STATES

• THE START STATE
REPRESENTS THE INITIAL PROBLEM

• EACH STATE REPRESENTS SOME
CONFIGURATION REACHABLE FROM
THE START STATE

• SOME STATES MAY BE GOAL
STATES (SOLUTIONS)

• A SET OF OPERATORS
• APPLYING AN OPERATOR TO A STATE

TRANSFORMS IT TO ANOTHER STATE
IN THE STATE SPACE

Each set of colored dots represents a state

USER STUDY

• COLLECTED DATA FROM 11 PARTICIPANTS, ALL WITH DRIVING
EXPERIENCE

• DRIVING TASK INVOLVED ISO 26022 LANE CHANGING TASK
• SECONDARY TASK INVOLVED POINTING AND SELECTION ON A

DASHBOARD
• USING TOUCH SCREEN

• GAZE TRACKING HUD

• GAZE TRACKING HUD WITH HOTSPOTS

RESULTS FROM DUAL TASK STUDY

Projected_HS Projected Touch
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0.95

1.66

1.13

Mean Deviation from Lane

Mean Deviation

Projected_HS Projected Touch
2000

2500

3000

3500

2608.72

3030.29

2556.72

Response Time

Response Time (in msec)

SUMMARY

• PROPOSED A MULTIMODAL HUD FOR AUTOMOTIVE
ENVIRONMENT

• DRIVERS NEED NOT TO TAKE EYES OFF FROM THE ROAD FOR
THE PROPOSED SYSTEM

• CAN BE OPERATED AS FAST AS A TOUCHSCREEN WITH
IMPROVED DRIVING PERFORMANCE

• PROPOSED A NEW ALGORITHM TO IMPROVE RESPONSE TIMES
FOR GAZE CONTROLLED INTERACTIVE SYSTEMS

59

TAKE AWAY POINTS

• STATE SPACE SEARCH
• UNINFORMED SEARCH

• BREADTH FIRST

• DEPTH FIRST

• IDA

• BIDIRECTIONAL

• INFORMED SEARCH
• BEST FIRST

• A*

• COMPARING SEARCH ALGORITHMS
• CASE STUDY ON IUI

• FORMULATE STATE SPACE

• IMPLEMENT

• EVALUATE

	Slide 1
	State-Space Search
	State-Space Model
	What you should know
	Uninformed search strategies
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Properties of breadth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Properties of depth-first search
	Depth-first vs. Breadth-first
	Iterative deepening search
	Iterative deepening search L=0
	Iterative deepening search L=1
	Iterative deepening search L=2
	Iterative Deepening Search L=3
	Bidirectional Search
	Informed search strategies
	Best-first search
	Romania with straight-line distance
	Greedy best-first search (often called just “best-first”)
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Optimal Path
	Properties of greedy best-first search
	A* search
	Slide 42
	A* search example
	A* search example
	A* search example
	A* search example
	A* search example
	A* search example
	Contours of A* Search
	Properties of A*
	Slide 51
	Context
	Eye movement
	Eye Gaze Controlled Projected Display
	Improving Gaze Tracking – Hot Spots
	State Space Search
	User Study
	Results from Dual Task Study
	summary
	Take Away Points

