Introduction to Signal and Image Processing

Dr Pradipta Biswas, PhD (Cantab)
Assistant Professor
Indian Institute of Science
https://cambum.net/
Signal Processing

• Humans are the most advanced signal processors
 – speech and pattern recognition, speech synthesis,…

• We encounter many types of signals in various applications
 – Electrical signals: voltage, current, magnetic and electric fields,…
 – Mechanical signals: velocity, force, displacement,…
 – Acoustic signals: sound, vibration,…
 – Other signals: pressure, temperature,…

• Most real-world signals are analog
 – They are continuous in time and amplitude
 – Convert to voltage or currents using sensors and transducers

• Analog circuits process these signals using
 – Resistors, Capacitors, Inductors, Amplifiers,…

• Analog signal processing examples
 – Audio processing in FM radios
 – Video processing in traditional TV sets
Why we need in research

• We measure parameters for a time duration
 – We can consider it a signal \(f(t) \)
• We work with images or videos
 – We can consider it a signal \(f(x,y) \) or \(f(x,y,t) \)
• We need to find
 – Correlation
 – Outlier
 – Sudden change in signal
 – Repeating pattern and so on
Contents

- Analog and Digital Signal
- Basic Signal Operations
- Digital Signal Processing
- Time and Frequency Domain Representations
- Filtering Techniques
- Masking
Basic Signal Operations

- Arithmetic operations
- Differentiation / Integration
- Time shifting / scaling
Limitations of Analog Signal Processing

• Accuracy limitations due to
 – Component tolerances
 – Undesired nonlinearities
• Limited repeatability due to
 – Tolerances
 – Changes in environmental conditions
 • Temperature
 • Vibration
• Sensitivity to electrical noise
• Limited dynamic range for voltage and currents
• Inflexibility to changes
• Difficulty of implementing certain operations
 – Nonlinear operations
 – Time-varying operations
• Difficulty of storing information
Digital Signal Processing

• Converting a continuously changing waveform (analog) into a series of discrete levels (digital)
What is DSP?

• The analog waveform is sliced into equal segments and the waveform amplitude is measured in the middle of each segment.

• The collection of measurements make up the digital representation of the waveform.
Sampling

• Sampling is a process of converting a signal (for example, a function of continuous time and/or space) into a numeric sequence (a function of discrete time and/or space)

• If a function $x(t)$ contains no frequencies higher than B hertz, it is completely determined by giving its ordinates at a series of points spaced $1/(2B)$ seconds apart

• A sufficient sample-rate is therefore $2B$ samples/second, or anything larger. Equivalently, for a given sample rate fs, perfect reconstruction is guaranteed possible for a bandlimit $B < fs/2$

• The two thresholds, $2B$ and $fs/2$ are respectively called the Nyquist rate and Nyquist frequency
Aliasing

- Aliasing is an effect that causes different signals to become indistinguishable (or aliases of one another) when sampled.

- If the sampling rate is B Hz, any frequency over $B/2$ Hz in the original signal will create aliasing effect.

- Aliasing causes:
 - Distortion in audio signal
 - Moiré patterns in digital image
 - Wagon wheel effect in video
Resolution Trade-offs

<table>
<thead>
<tr>
<th>Bit Resolution</th>
<th>High Bit Count</th>
<th>Good Duplication</th>
<th>Slow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Bit Count</td>
<td></td>
<td>Poor Duplication</td>
<td>Fast</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Rate</th>
<th>High Sample Rate</th>
<th>Good Duplication</th>
<th>Slow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Sample Rate</td>
<td></td>
<td>Poor Duplication</td>
<td>Fast</td>
</tr>
</tbody>
</table>
Continuous Time and Frequency Domain

In continuous time, there is a one to one correspondence between a sinusoid and its frequency domain representation:

\[x(t) \]

\[\begin{align*}
0 & \quad F
A & \quad \alpha
F_0 & \quad -F_0
\end{align*} \]

magnitude

phase

radians

One-to-One correspondence (no ambiguity!!)
Example

Given this sinusoid, its frequency, amplitude and phase are unique.
Jean Baptiste Joseph Fourier

Fourier was born in Auxerre, France in 1768

– Most famous for his work “La Théorie Analitique de la Chaleur” published in 1822

Nobody paid much attention when the work was first published

One of the most important mathematical theories in modern engineering
The Big Idea

Any function that periodically repeats itself can be expressed as a sum of sines and cosines of different frequencies each multiplied by a different coefficient – a *Fourier series*
The Discrete Fourier Transform (DFT)

The *Discrete Fourier Transform* of $f(x, y)$, for $x = 0, 1, 2\ldots M-1$ and $y = 0, 1, 2\ldots N-1$, denoted by $F(u, v)$, is given by the equation:

$$F(u, v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j2\pi(ux/M + vy/N)}$$

for $u = 0, 1, 2\ldots M-1$ and $v = 0, 1, 2\ldots N-1$.
The Inverse DFT

It is really important to note that the Fourier transform is completely reversible.

The inverse DFT is given by:

\[
f(x, y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j2\pi (ux/M + vy/N)}
\]

for \(x = 0, 1, 2 \ldots M-1 \) and \(y = 0, 1, 2 \ldots N-1 \)
The Laplace Transform of a function, $f(t)$, is defined as:

$$L[f(t)] = F(s) = \int_{0}^{\infty} f(t)e^{-st} dt$$

The Inverse Laplace Transform is defined by

$$L^{-1}[F(s)] = f(t) = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} F(s)e^{ts} ds$$
The Laplace Transform of a unit step is:

\[L[u(t)] = \frac{1}{s} \]

Z-Transform

- Discrete-time signals

- Definition:

\[X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} \]

- \(z \) is a complex variable:

\[z = re^{j\omega} = r\cos(\omega) + jr\sin(\omega) \]
Z-transform

• What is \(z^{-n} \) or \(z^n \)?

\[
\begin{align*}
z^{-n} &= r^{-n} e^{-j\omega n} \\
&= r^{-n} \cos \omega n - j r^{-n} \sin \omega n \\
\text{real part} & \quad \text{imaginary part}
\end{align*}
\]

\[
\begin{align*}
z^n &= r^n e^{j\omega n} \\
&= r^n \cos \omega n + j r^n \sin \omega n \\
\text{real part} & \quad \text{imaginary part}
\end{align*}
\]

– rate of decay (or growth) is determined by \(r \)
– frequency of oscillation is determined by \(\omega \)
<table>
<thead>
<tr>
<th>Laplace Transform</th>
<th>Z – Transform</th>
<th>Fourier Transform</th>
</tr>
</thead>
</table>
| Applicable for continuous time system analysis
• Used to solve differential equation.
• Stability of the system can be determined by the location of poles in the s-plane. (A system is stable if all poles lie to the left of s-plane). | For describing and analyzing digital systems
• Used to solve difference equations
• Pole-zero plot provides a graphical tool to investigate the characteristics of a digital system (eg. Digital filter).
Location of poles in Z-plane determines the stability of a system (stable if poles are inside the unit circle amplitude).
• Used to analyze the transient and steady state responses of a LTI system.
• Can be defined for both stable and unstable systems. | Gives a relationship between time domain and frequency domain representation of a signal. Few application areas are:
• Used for amplitude and power spectrum analysis
• Used for signal frequency analysis
• Used for signal processing, digital filter design.
• Can be defined only for stable system |
<table>
<thead>
<tr>
<th>Laplace Transform (LT)</th>
<th>Z – Transform</th>
<th>Fourier Transform (FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Represents continuous time domain signal in s-domain. Used to investigate the properties of a continuous time linear system.</td>
<td>Counter part of Laplace transform for discrete time signals. Used for analysis of discrete time signals.</td>
<td>Provides frequency domain representation of a time domain signal. Both Laplace and Z transforms have similarity relations with FT.</td>
</tr>
</tbody>
</table>

2 sided Laplace transform:

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$$

Inverse LT:

$$x(t) = (-\frac{j}{2\pi}) \int_{\sigma-j\omega}^{\sigma+j\omega} X(s)e^{st} d\omega$$

Z transform exists only for those values of z for which the series converges. This is represented by ROC.

Inverse Z transform:

$$x(n) = (1/2\pi j) \int X(z)z^{n-1}dz$$

For continuous time signals,

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

Its inverse FT is

$$x(t) = (\frac{1}{2\pi}) \int_{-\pi}^{\pi} X(\omega)e^{j\omega t} d\omega$$

$$\omega$$ is frequency in radians/s and x(t) is a time domain signal

For Discrete signals,

Analysis equations is

$$X(k) = \sum_{n=-\infty}^{\infty} x(n)e^{-j2\pi kn}$$

Synthesis equation is

$$x(n) = \sum_{k=0}^{N-1} X(k)e^{j2\pi kn}$$

(N is the number of samples in the period)

Z = re^{j\Omega}. If r = 1, Z transform is same a discrete FT.

| Cannot manage unstable systems. For FT to exists, the signal should be absolutely summable. FT is a special case of LT (s=jw) and Z transform (r=1). |
The DFT and Image Processing

To filter an image in the frequency domain:

1. Compute $F(u,v)$ the DFT of the image
2. Multiply $F(u,v)$ by a filter function $H(u,v)$
3. Compute the inverse DFT of the result
Some Basic Frequency Domain Filters

Low Pass Filter

High Pass Filter
Filtering

• Outlier / sudden change detection

• Smoothing

• Enhancement / Noise Cancellation

• Special purpose – edge detection
Filtering Example – Cursor Trace Smoothing

• Moving cursor in a vibrating place or by people with motor impairment create jitter in movement

• Filtering can remove jitter to facilitate pointing in a GUI

Kalman Filter

Polynomial Filter

Image Filtering

• The output $g(x,y)$ can be a linear or non-linear function of the set of input pixel grey levels \{f(x-M,y-M) \ldots f(x+M,y+M)\}.
Linear filtering and convolution

• Example
 – 3x3 arithmetic mean of an input image (ignoring floating point byte rounding)
 – Simple arithmetic averaging
 – Useful for smoothing images corrupted by additive broad band noise

Input image f(x,y) Output image g(x,y)

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
(x+1,y+1) & (x,y) & (x-1,y-1) \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Averaging Filter

- Convolution involves ‘overlap – multiply – add’ with ‘convolution mask’

\[H = \begin{pmatrix}
1 & 1 & 1 \\
9 & 9 & 9 \\
1 & 1 & 1 \\
9 & 9 & 9
\end{pmatrix} \]

Input image \(f(x,y) \)
Output image \(g(x,y) \)

○ Image point
● Filter mask point
Linear filtering and convolution

• We can define the convolution operator mathematically
 – Defines a 2D convolution of an image $f(x,y)$ with a filter $h(x,y)$

\[
g(x, y) = \sum_{x'=-1}^{1} \sum_{y'=-1}^{1} h(x', y') f(x - x', y - y')
\]

\[
= \frac{1}{9} \sum_{x'=-1}^{1} \sum_{y'=-1}^{1} f(x - x', y - y')
\]
Gaussian filter

• Example – convolution with a Gaussian filter kernel
 – σ determines the width of the filter and hence the amount of smoothing

$$g(x, y) = \exp\left(-\frac{(x^2 + y^2)}{2\sigma^2}\right)$$

$$= g(x)g(y)$$

$$g(x) = \exp\left(-\frac{x^2}{2\sigma^2}\right)$$
Example Images

Original

Noisy

Filtered
σ=1.5

Filtered
σ=3.0
Edge Detection

• Edge detection filter
 – Simple differencing filter used for enhancing edges
 – Has a bandpass frequency response

\[
H = \begin{pmatrix}
1 & 0 & -1 \\
1 & 0 & -1 \\
1 & 0 & -1 \\
1 & 0 & -1 \\
\end{pmatrix}
\]
The Sobel Operators

• Better approximations of the gradients exist

 – The *Sobel* operators below are commonly used

\[
\begin{array}{ccc}
 -1 & 0 & 1 \\
 -2 & 0 & 2 \\
 -1 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{ccc}
 1 & 2 & 1 \\
 0 & 0 & 0 \\
 -1 & -2 & -1 \\
\end{array}
\]

\(s_x \)

\(s_y \)
Comparing Edge Operators

Gradient: \(\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix} \)

Roberts (2 x 2):

\[
\begin{bmatrix}
0 & 1 \\
-1 & 0
\end{bmatrix} \quad \begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\]

Sobel (3 x 3):

\[
\begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{bmatrix} \quad \begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & 1
\end{bmatrix}
\]

Sobel (5 x 5):

\[
\begin{bmatrix}
-1 & -2 & 0 & 2 & 1 \\
-2 & -3 & 0 & 3 & 2 \\
-3 & -5 & 0 & 5 & 3 \\
-2 & -3 & 0 & 3 & 2 \\
-1 & -2 & 0 & 2 & 1
\end{bmatrix} \quad \begin{bmatrix}
1 & 2 & 3 & 2 & 1 \\
2 & 3 & 5 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 \\
-2 & -3 & -5 & -3 & -2 \\
-1 & -2 & -3 & -2 & -1
\end{bmatrix}
\]

Good Localization
Noise Sensitive
Poor Detection

Poor Localization
Less Noise Sensitive
Good Detection
Case Study - PCB Inspection

1. RGB to HSV
2. Split H Channel
3. Segmentation using multithreshing
4. Canny edge detection and contour on original image
5. Morphological processing

Flowchart:
- Input Image
 - Convert the image into HSV space
 - Split the H-channel
 - Threshold the channel to get binary image
 - Apply canny edge detection to find edges
 - Draw the contour on the original image
Video Demonstration – PCB Inspection
Take Away Points

• Representing data as a signal

• Doing elementary signal manipulation

• Time and frequency domain conversions

• Filtering, Smoothing and Masking operations