## Theories of Cognition & Motor-Action

Dr Pradipta Biswas, <sub>PhD (Cantab)</sub> Assistant Professor Indian Institute of Science https://cambum.net/

## Cognition

### Brain





# Early influential work

130





Warren McCulloch

264

PAUL M. FITTS



LOGICAL CALCULUS FOR NERVOUS ACTIVITY

Figure 1. Reciprocal tapping apparatus. The task was to hit the center plate in each group alternately without touching either side (error) plate.

Walter Pitts

### Problem



# Holistic Picture

#### HOME : EVENTS : CARNEGIE SYMPOSIUM ON COGNITION : PAST SYMPOSIUMS

### CARNEGIE SYMPOSIUM ON COGNITION

COLLOQUIUM SERIES

CARNEGIE SYMPOSIUM ON COGNITION

BROWN BAGS

CMU MAIN CALENDAR OF EVENTS PAGE

CMU OFFICIAL HOLIDAYS

O The 37th Carnegie Mellon Symposium on Cognition (June 2-3, 2009) "From Child to Scientist: Mechanisms of Learning and Development" A Festschrift in honor of the scientific and educational contributions of David Klahr.

#### web-page

 O The 36th Carnegie Mellon Symposium on Cognition (June 2-3, 2009) "Expertise and Skill Acquisition: The Impact of William G. Chase"
 -J. R. Anderson, M. A. Just, R. S. Siegler, & J. J. Staszewski

### web-page

 O The 35th Carnegie Mellon Symposium on Cognition (2008) "Development and Brain Systems in Autism" -Marcel Just & Kevin Pelphrey, Organizers

#### web-page

 O The 34th Carnegie Mellon Symposium on Cognition (2004) "Embodiment, Ego-space, and Action" -Klatzky, MacWhinney & Behrmann

web-page publication information



## Time scale of action

| TIME SCALE OF HUMAN ACTION                               |                                           |            |
|----------------------------------------------------------|-------------------------------------------|------------|
| SCALE<br>(sec)                                           | SYSTEM                                    | STRATUM    |
| 10 <sup>7</sup><br>10 <sup>6</sup><br>10 <sup>5</sup>    |                                           | SOCIAL     |
| 10 <sup>4</sup><br>10 <sup>3</sup><br>10 <sup>2</sup>    | Task<br>Task<br>Task                      | RATIONAL   |
| 10 <sup>1</sup><br>10 <sup>0</sup><br>10 <sup>-1</sup>   | Unit Task<br>Operations<br>Deliberate Act | COGNITIVE  |
| 10 <sup>-2</sup><br>10 <sup>-3</sup><br>10 <sup>-4</sup> | Neural Circuit<br>Neuron<br>Organelle     | BIOLOGICAL |



- State space model  $\rightarrow$  Memory and problem definition
- Impasse  $\rightarrow$  Can't find a rule, decompose goal to sub-goals
- Chunking  $\rightarrow$  Learning new situation

# Model Human Processor





### Uses both symbolic and sub-symbolic processing

### ACT - R

- Uses declarative and procedural memory like SOAR
- The subsymbolic structure is a set of parallel processes that can be summarized by a number of mathematical equations.
- The equations that make up the subsymbolic level are not static and change with experience.

### ACT - R

- The subsymbolic learning allows the system to adapt to environment.
- Whether and how fast a memory element can be retrieved from declarative memory depends on the subsymbolic retrieval equations, which take into account the context and the history of usage of that fact.

### Memory retrieval



### Errors

### Table 8.2 A catalogue of errors

#### Skill-based performance Inattention Overattention Double-capture slips Omissions Omissions following interruptions Repetitions Reversals Reduced intentionality Perceptual confusions Interference errors **Rule-based** performance Misapplication of good rules Application of bad rules First exceptions **Encoding deficiencies** Countersigns and nonsigns Action deficiencies Informational overload Wrong rules Rule strength Inelegant rules General rules Inadvisable rules Redundancy Rigidity Knowledge-based performance Selectivity Workspace limitations Out of sight out of mind Confirmation bias Overconfidence **Biased** reviewing Illusory correlation Halo effects Problems with causality Problems with complexity Problems with delayed feedback Insufficient consideration of processes in time Difficulties with exponential developments Thinking in causal series not causal nets Thematic vagabonding Encysting



Source: Based on Reason, 1990

Figure 8.3 The Generic Error Modelling System (GEMS). (Based on figure 3.1, Reason, 1990)

### Designers' points

- More connections  $\rightarrow$  Easy retrieval
  - Try to make interface elements familiar to users
  - Use analogy to users' known objects, actions
- Identify and categorize prospective errors by end users
- Think about short term / working memory load while designing an interface
  - Restrict amount of items in a single screen

## Motor action

# Rapid Aiming Movements



Quick

Accurate

### Preprogrammed





## Woodworth's study

Eye open – visual feedback

### **Error** ∞ Speed

Eye close – no visual feedback

Accuracy does not depend on Speed

# Two phases of movement

• Initial impulse

Current control

Fitts' Law



Figure 1. Reciprocal tapping apparatus. The task was to hit the center plate in each group alternately without touching either side (error) plate.

# Applications

- Moving cursor in a screen using mouse or joystick
- Transferring pegs into hole
- Aiming movement under water
- Manipulating objects under a microscope

# Explanations

• Iterative correction model [Crossman & Goodeve 1963/1983]



# Problems in explanation

Need of corrective movements

• Timing of corrective movements

# Impulse variability model

 Neuro motor impulse -> burst of force towards target (Schimdt et al, 1979)

**Distance** ∞**Amount of force** ∞ **Variability of force** 



# Optimized initial impulse model

- Accommodates both Schimdt and Crossman's model (Meyer et al, 1988)
- Supports both initial impulse and current control



# Computer input device



Card's first home run came when he used a then-little-known law called "Fitts' law" to examine input devices such as joy sticks, a head-motion detector, and a newfangled controller that hung by a cable from the computer called a "mouse." Fitts' law analyzes how easily a human can hit any given target - in this case, moving a cursor to a specific point on a screen - and Card measured the mouse to be almost as simple as if one could move the cursor around on the screen with one's hand. After Card's work, Xerox began manufacturing mice, Apple soon followed, and now they're practically de rigueur on all computers.





# ISO Pointing Task





Movement Time vs ID plot

28

# ISO Pointing Task - Software

### http://cambum.net/I3D\_PointingTask/index.html



# Motor impaired users

## Fitts' Law



Smits-Engelsman [2007]

Gajos [2007]



Trewin and Pain, 1999 Keates, Clarkson and Robinson, 2000 Keates and Trewin, 2005 Keates, Trewin and Paradise, 2005



Bravo [1993]

Gump [2002]

# Hand strength











### Model



Linear regression model predicts number of submovements and movement time in each phase

### Designers' points

### • It takes more time to point if

- Target is away from source
- Target is small in size
- Movement occurs in multiple sub-movements
- Sub movements in homing phase may be random due to physical or situational impairment
  - Increase inter-button spacing to avoid wrong selection

### Take away points

- Models of memory & cognition
- Introduction to Symbolic and Connectionist models
  SOAR & ACT-R
- Fitts' Law analysis
- Movement patterns of motor impaired users