Theories of Perception

Dr Pradipta Biswas, PhD (Cantab)
Assistant Professor
Indian Institute of Science
https://cambum.net/

Vision

Same stimuli – Different Perception

Eye

Human Eye

- ♦ FoV, both eyes combined 200-220°
- ♦ Peak visual acuity 0.5-1°
- ♦ Fovea 1-2°
- ♦ Head movement range approximately 50°
- Ratio of maximum to minimum perceivable light intensity is 10¹⁰

a@iisc
.ac.in,
https:/
/camb
um.net

Principle of Vision

- ♦ Top down theory: You perceive what you want to
- ♦ Bottom up theory: You decompose & reconstruct
- ♦ Visual Search
 - ♦ Serial (search time ∞ number of items)

♦ Parallel (pop out effect)

Recording from an eye tracker

Visual Cortex

- Visual Pathway
 - Where and What Pathway
 - M and P pathway
- V1 Primary visual cortex
 - Feature extraction
 - Colour and orientation feature
 - Mapping of retina on surface of cortex

11

- V2 region
 - Visual orientation map
 - Colour map
 - Disparity map
- V4 region
 - Colour recognition
 - Object discrimination
- V3 and V5 regions
- Motion
- Stereoscopic vision
- Visual guidance and scanning

Modelling Vision

Points of fixation

Simulation Result

Visual Search Time

Eye Gaze Movement

Icon design

Right hand side icons are more distinctive, but not necessarily 'better'

Types of Eye Gaze Movement

♦ Saccades

Smooth Pursuits

♦ Vergance

Eye Movement Strategies

Eye gaze needs to move more distance on right hand side interface but again it does not mean the LHS interface is better

Cone spectral sensitivities

Distribution of Colour Sensitive Cells

We have less Blue photoreceptors than Red or Green ones

Blue cones are organized away from the fovea

Colour in computers and printers

Colour blindness

Main challenges in modelling vision

- Modelling for complex scenes
- ♦ Developing eye-movement strategy
- Modelling prior knowledge

Visual Angle Calculation

Definitions of Variables Used in the Equations

Parameter	Icon	Text
Optimal visual angle (x)	1.433 degrees	0.333 degrees
Tan(x)	0.025	0.0058
Symbol Height (H)	$D \times \tan(x) = 120 \times 0.025$ = 3 cm = 1.18 in	$D \times \tan(x) = 120 \times 0.0058$ =0.7 cm = 0.275 in
Symbol height (H)	320.4 px	72.09 px

Designers' points

- ♦ Keep similar interface items together
- ♦ Use distinctive symbols but keeping in mind consistency
- Remember how a colour will be rendered, considering colour blind users
- ♦ Remember top down theory, means users' expectation from an interface

Hearing

Hearing impaired users

- ♦ Difficult to listen soft sound
- ♦ Loud sound may seem louder (Loudness recruitment)
- ♦ Reduced response to spectral contrast (like blurring of an image)

Hearing impairment examples

Designers' points

- ♦ Increasing volume cannot solve the problem
- ♦ Background noise and music may reduce audibility
- ♦ Certain words or syllabi have higher chances to be confused, which should be taken care of during designing audio based dialog system

Take away points

- ♦ Principles of vision and hearing
- Modelling visual perception
 - ♦ Visual search → Icon design
 - ♦ Eye movement strategies → Screen layout
 - ♦ Colour vision → Colour contrast of interface
- ♦ Auditory perception
 - ♦ Issues with loudness recruitment