Learning Rate in
Machine Learning

Dr Pradipta Biswas, p,p (cantab)
Assistant Professor

Indian Institute of Science
https://cambum.net/

Maxima and

Minima Stationary Points

Classical
Optimization vs
Machine Learning

Stochastic
Gradient Descent

Adaptive Learning
Rate

Acknowledgement

FOR
HINE LEARNI
r

| Marc Pefef-Daisenroiny

s T T T8

\ SIXTH EDITION

PERATIONS
RESEARCH

AN INTRODUCTION

7~ :
)

PrerequlteS Introduction to Machine Leamung

e Partial Differential Calculus

e Basics of Gradient Descent

e Backpropagation Algorithm 0006000 OGOIOIOITIR LS "0 S

Maxima & Minima
of a Function

An extreme point of a function f(X)
defines either a maximum or a minimum
of the function.

Mathematically, a point Xg = (X1,...,Xj,-...X;)
is @ maximum if
f(X, + h) < f(X,)

for all h= (hy,..., hJ-,..., h,) such that
|h|, is sufficiently small for all .

Xo 1s @ maximum if the value of f at
every point in the neighborhood of X,
does not exceed f(X,).

In a similar manner, X, is @ minimum if
for h as defined

f(X, + h) > f(X,)

1. A necessary condition for X, to be an extreme point of
f(x) is that v f(X;)=0

2. A sufficient condition for a stationary point X,, to be an
extremum is for the Hessian matrix H evaluated at X, to be

(i) Positive definite when X, is a minimum point.
(i) Negative definite when X, is a maximum point.

Stationary

3. If at a stationary point y, of f(y), the first (n-1) derivatives

Point vanish and f"(y) # 0, then aty = y,, f(y) has

(i) An inflection point if n is odd. '

(i) An extreme point if n is even. This extreme point
will be a maximum if fV o <0 and a minimum if f{V > 0

/
7

C 6

What is Hessian Matrix

 The Hessian ﬂgf
matrix or Hessian is [Hf): - +
a square matrix of o O, ﬂﬂij
second-order partial
derivatives of a scalar- [&f of &f]
valued function, or scalar 0z} Ox1 0z Oz, Oy,
field. 5 5 2 f
* It describes the local Oxy Oz O} Oz Ozn |
curvature of a function of
many variables.
o f i A |
| Oz, Oz, Oz, Oz oxz

https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Scalar_field

m— e —

Consider the two functions
Ay)=y' and g(y) =y

For f{y) = y*
f(y)=4y’=0

E Xa m p ‘ e Of which yields the stationary point y, = 0. Now
. 1) = £(0) = £2A0) =0
Sta t I O n a ry But f(;:’é?)g(—yfi ; 0; hence, y, = 0 is a minimum point (see Figure 20-2).

Points ¢0) =3y =0

This yields y, = 0 as a s

. tationa i :
Yo = Ois an inflecfion point, Ty point. Because g™(0) is not zero at » -

a3k HON RS

.\ ’ 0 y
0 y /

Classical
Optimization
vs Machine
Learning

Optimization algorithms find
maxima or minima of an
objective function

ML algorithms also try to
minimize loss function
between actual and
prediction

»We can convert a machine learning problem
Into an optimization problem by minimizing the
expected loss on the training set.

»This means replacing the true distribution p(x,
: y) with the empirical distribution p*(x, y) defined
Classical by the training set.

Optimization »We now minimize the empirical risk

vs Machine
I_ea rn | ﬂ g frTraining Data

Loss

Empirical Probability Distribution Function]

E

* where m is the numbet ralnthg examples.

10

1.0

0.9 1

0.8 1

0.7 1

0.6 1

0.5 1

0.4 4

Differences in
Classical

Optimization
and ML

Loss

—— train
—— validation

100 200 300 400 500

In optimization problem, we know the objective function
while in ML we try to ESTIMATE it from training data set

We often only reduce the loss function instead of finding
minima, which is good enough for practical purposes
Stopping condition

e Optimization algorithm stops when gradient becomes
very small (may be local minima)

* ML algorithm stops when overfitting begins to occur
(early stopping condition)

Optimization algorithm works on the objective function but
ML algorithm often works on a surrogate loss function
(e.g.: Log-Likelihood)

11

0060000000

Sincem=m— &m Sinceb=Db— &b

Gradient Descent S ———

b'=b"— Error # Learning Rate E

Backward Pass

(.)Efoi(zl dout,l * dInetoy

aEfm‘u/ _

away from \ Y
minimum
= XA P — 7 A I
\‘(4| Y =X*2 ows dout onet ows
dnet,) . dout, OE;otai OE; o1l
towards output ows ~ Onet,] ~ Oout,y ows,
minimum h1
w5
output
5 E o1 = Y(target o4 - out,,)

Etotal = Eo1 +E 02

b2

Minima
~ 1 1
- 2 2
Eiotal = 5(target,y — out,)” + 5(targetyy — out)
OFEiota . ’ 2-1
-4 ’(}{”’fl'l’ = 2 % %(T(uy(tor — outy) lx—140

9Lwral — _(target,; — outy) = —(0.01 — 0.75136507) = 0.74136507

dout,

* Take a subset of the full training
dataset

Stochastic Gradient Descent

e Batch processing works on
the full data set

* It is enough if we can find the
right direction of gradient (change
in model parameters) from a

Require: Learning rate ¢ subset of training example
Require: Initial parameter 6
ile stopping criterion not met do

Samp]c a minibatch Of m exampl% fl'Oln the training set {m“)-, “eny a:UT”} With] * For CO nve rgence

corresponding targets.y(')- : —— : - « We require the gradient from the
Compute gradient estimate: g + +;Vo Z,' L(f(='";8),y"). subset of training dataset is an
Aonly update: 8 — 6 — €g. unbiased estimate of true gradient

adient descent (SGD) update at training iteration k

—

Algorithm 8.1 Stochast ic gr

end while * The algorithm makes an empirical

estimate of the expected value of
gradient

Cost

Learning Rate in
Gradient Descen

Initial
Weight

Incremental

Step \ :

¥

>

t m'= m%*—

~

= Minimum Cost

a——

Derivative of Cost "™

Weight

>

o
—I = Error = X = Learning Rate

—] = Error = Learning Rate
om

db

Sincem =m — &m Sinceb = b — &b

=
Error * Learning Rate

B

Error = X * Learning Rate b'= b%—

loss

low learning rate

high learning rate

good learning rate

14

= Error = X » Learning Rate = Error = Learning Rate

om

Sincem=m-— ém Sinceb=b— &b

e e Ny
m'= m® Error * X = Learning Rate b'= b’— Error * Learning Rate
s

* Small Learning Rate slows down
convergence

* Large Learning Rate may overshoot minima

. . and can even fail to converge
Learning Rate In

Gradient Descent How to find best Learning Rate

* Can we Adapt Learning Rate across
Iterations

7.1 Optimization Using Gradient Descent

e Can we have different Learning Rates for
different Model Parameters

15

Gradient Descent

90
Momentum

* Remembering past change in
gradient

* Increase Learning Rate if Gradient
changes in same direction

* Decrease Learning Rate if Gradient is
changing in opposite direction in
subsequent iterations

* Physical Analogy —

* Damping to and fro oscillation

of gradient

* Adding weight to an oscillating
ball resisting direction change

Momentum

SGD with Momentum

S v['

Algorithm 8.2 Stochastic gradient descent

Require: Learning rate €, momentum parameter o

Require: Initial parameter @, initial velocity v
while stopping criterion not met do

| - c'"" ¥ with

ponding targets y“).

t
A A N
~

Compute gradient estimate: g < —Vg > . L(f(x';0).y

Compute velocity update: v <+ av — €g.

Applv update: 8 — 6 + v.
end while

18

Nesterov Moment Update

Momentum update

momentum
step
actual step

gradient
step

Va0 «— t’.VG = Z L(f(m(Z)a 0)7 y(z)))

6 —6+v.

Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

actual step

620 = € V5 | SN (f(;l:"’;ﬁ,_l/“’)\
If8) | |

g — 0+ v,

* Small Learning Rate slows down
convergence

* Large Learning Rate may overshoot minima
and can even fail to converge

Learning Rate In

Gradient Descent * How to find best Learning Rate

* Can we Adapt Learning Rate across
Iterations

* Can we have different Learning Rates for
different Model Parameters

20

Adaptive
Learning
Rate —
Basic
Algorithm

The delta-bar-delta algorithm is an early
heuristic approach to adapting individual
learning rates for model parameters during
training.

If the partial derivative of the loss, with
respect to a given model parameter, remains
the same sign, then the learning rate should
increase.

If that partial derivative changes sign, then
the learning rate should decrease. Of course,
this kind of rule can only be applied to full
batch optimization.

Adaptive Learning Rate
—AdaGrad Algorithm

 The AdaGrad algorithm individually adapts the
learning rates of all model parameters by scaling
them inversely proportional to the square root
of the sum of all the historical squared values of
the gradient.

* The parameters with the largest partial
derivative of the loss have a correspondingly
rapid decrease in their learning rate, while
parameters with small partial derivatives have a
relatively small decrease in their learning rate.

* The net effect is greater progress in the more
gently sloped directions of parameter space.

250

200

150

100

50

10

15

20

25

30

®a=1
a=0.5
a=0.9

MNIST Multilayer Neural Network + dropout

— AdaGrad
— RMSProp
— SGDNesterov
AdaDelta
Adam

Adaptive Learning Rate =
—Modern Algorithms

* Instead of taking the cumulative sum of squared
gradients like in AdaGrad, RMSProp takes the

exponential moving average. S

* Works better than AdaGrad for non-convex £
functions g

« The Adam Optimizer inherits the strengths or 107}

the positive attributes of the previous two
methods and builds upon them to give a more
optimized gradient descent.

* Adam uses estimations of first and second
moments of gradient to adapt the learning rate

|

for each weight of the neural network. o =0 700 750 300
iterations over entire dataset

https://www.geeksforgeeks.org/intuition-of-adam-optimizer/

https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375¢ ~ *°

https://www.geeksforgeeks.org/intuition-of-adam-optimizer/
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c

Conclusions

Which algorithm should one choose?

There is currently no consensus on this point.

Algorithms with adaptive learning rates (represented by RMSProp
and AdaDelta) performed fairly robustly, There is no single best
algorithm.

The most popular optimization algorithms actively in use include
SGD, SGD with momentum, RMSProp, RMSProp with momentum,
AdaDelta, and Adam.

The choice of which algorithm to use, at this point, seems to depend
largely on the user's familiarity with the algorithm (for ease of
hyperparameter tuning).

24

