# Cognitive Load Estimation

2.

30

45<sup>-11</sup>120 60<sup>-75</sup> 90<sup>105</sup>

0

RMV

HINK

Dr Pradipta Biswas, PhD (Cantab)

Associate Professor ian Institute of Sciences 180 https://cambum.net/

0

5 00 11 120 75 90 105

120<sup>5</sup>90<sup>75</sup>60

165 -180 \_15

# Why Cognitive Load Estimation

- Finite capacity of working memory
- Mental workload
- Stress / Distraction / Boredom

George Armitage Miller



John Sweller

### What You Need to Know About COGNITIVE LOAD



Pilots in India are testing aircraft display systems that work by tracking and responding to eye movements and could let military pilots keep their hands on the plane's controls more often while flying.

Modern aircraft have electronic display systems that show information such as the plane's fuel level, imaging system or geographical position. Pilots can click the screen to the relevant page of

Eve-tracking devices could help pilots keep their hands on the throttle Indian institute of Science in Bangalane

Cognitive Load from Ocular Parameters



# **Cognitive Load Estimation**

| TIN                                | Æ SCALE OF HUMAN | ACTION     |
|------------------------------------|------------------|------------|
| SCALE<br>(sec)                     | SYSTEM           | STRATUM    |
| 10 <sup>7</sup><br>10 <sup>6</sup> |                  | SOCIAL     |
| 10 <sup>5</sup>                    |                  |            |
| 10 <sup>4</sup>                    | Task             |            |
| 10 <sup>3</sup>                    | Task             | RATIONAL   |
| 10 <sup>2</sup>                    | Task             |            |
| 101                                | Unit Task        |            |
| 10 <sup>0</sup>                    | Operations       | COGNITIVE  |
| 10 -1                              | Deliberate Act   |            |
| 10 -2                              | Neural Circuit   |            |
| 10 -3                              | Neuron           | BIOLOGICAL |
| 10 -4                              | Organelle        |            |

A Newell, Unified Theories of Cognition

- Our research estimates ٠ cognitive load from ocular parameters
- Neural processing work at • processing trials.
- Hike in Pupil Dilation is • correlated to EEG output
- SI or SWJ are clinically used ٠ to diagnose neurological problems like Alzheimer's Disease or Progressive Supranuclear Palsy



a faster level than cognitive Figure 2. Mean values for reaction times, accuracy, pupil size (indicating pupil dilation), P300 amplitude at electrode Pz, upper alpha power (Pz), and theta power (Fz). Error bars: ± 1 SEM. The \*, >, and < mark significant differences (p < .05). Light gray color symbolizes congruent trials, dark gray color incongruent



black error bars indicate +1 standard error of the mean

#### Cognitive Load and Ocular Parameters

| Indicator of Increased Cognitive Workload |                          |  |
|-------------------------------------------|--------------------------|--|
| 1                                         | Blink Duration           |  |
| 1                                         | Blink Interval           |  |
| ↑                                         | Blink Frequency          |  |
| ↑                                         | Saccade Rate             |  |
| 1                                         | Saccade Peak             |  |
|                                           | Velocity                 |  |
| 1                                         | Saccade Amplitude        |  |
| ↑ (                                       | Pupil Size               |  |
| ↑                                         | Pupil Dilation           |  |
| 1                                         | Fixation Frequency       |  |
| 1                                         | <b>Fixation Duration</b> |  |
| 1                                         | Horizontal Fixation      |  |
| 1                                         | Vertical Fixation        |  |
| 1                                         | Mean Dwell Time          |  |
| Ļ                                         | Saccade Extent           |  |
| Ļ                                         | Blink Rate               |  |
| Ļ                                         | Area of Visual Field     |  |

### Cortical Topography

Adapted from Neuroanatomy -A Primer, by K. Sukel, 2011, http://www.dana.org/News/Det ails.aspx?id=43515

Cudlenco, Nicolae & Popescu, Nirvana & Leordeanu, Marius. (2019). Reading into the mind's eye: Boosting automatic visual recognition with EEG signals. Neurocomputing. 386. 10.1016/j.neucom.2019.12.076.

#### Anatomy and Functional Areas of the Brain



### EEG

- Electroencephalography (1924)
- Hans Berger







From Wikimedia Commons

### PSD Analysis: Frequency bandwidths

|        | Band  | Frequency (hz)              | Correlates                                             |
|--------|-------|-----------------------------|--------------------------------------------------------|
|        | Delta | <3                          | Slow wave sleep                                        |
|        | Theta | 3-7                         | Memory Creation,<br>Hypnagogia                         |
| wwww   | Alpha | 8-13                        | Relaxation, Reflection<br>Closed Eyes, Intrinsic Focus |
| mmmm   | Beta  | 13-30                       | Active cognition, Intense concentration                |
| rmmmml | Gamma | 30+                         | Multisensoring processing,<br>Euphoria, High Focus     |
| MMMM   | Mu    | 8-12<br>(Over sensorimotor) | Suppression has been linked with empathy               |

# Cognitive Load / Mental Workload

- Depletion of mental resources due to mental demands of a task
- High Workloads vs Low Workloads
- Individualized
- Limited Resources and Unlimited demands
- Importance in Occupations : ATCs and Healthcare
- Processing and Integration of Information Task-related knowledge, working memory, decision making, attention

### Cognitive Load Theory

- Sensory Memory → Relevancy → Working Memory → Processing → Long term theory (Schema)
- Limited Capacity ( "Multitasking is a myth")
- Intrinsic
- Extrinsic
- Germane (New Schema)

## Assessment of Cognitive Load

- <u>Subjective Metrics</u> NASA-TLX, ATWIT
- <u>Objective Metrics:</u>

   Behavioral:
   Physiological:
   Pupil dilation, blink frequency, duration, saccades; (ECG), heart rate and variability (HRV),

  Neuropsychological: EEG, fNIRS, fMRI
- EEG is most widely used for cognitive load estimation

Stein E.S. 1985 (Loft S, 2015; Debbie E, 2019 Mulder, L.1989

# EEG for Estimation of Cognitive Load

#### • Theta band

mental fatigue, mental workload, demands on cognitive resources, task difficulty, working memory, concentration, lower mental vigilance and alertness, a loss of cortical arousal

• <u>Alpha band</u>

reduction in attention or alertness, cognitive fatigue, relaxed states, Lower mental vigilance, task difficulty,

parietal and occipital areas

#### • Beta band

Visual attention, short-term memory, working memory, mental workload, concentration.

Arousal of the visual system during increased visual attention

# EEG Indicators of Cognitive Load

Vidulich, M. A.,2012, Xie, J., 2016, Antonenko, P., 2010; Borghini, G., 2012, Parasuraman, R.,2002;Maior, H. A., 2014, Paus, T., 1997; Sterman, M., 1995

Antonenko, P., 2010, Puma, S., 2018, MacLean, M. H., 2012 Parasuraman, R., 2002 Maior, H. A 2014 Mazher, M., 2017, Xie, J.,2016, Wróbel, A. 2000, Sauseng P.,2005, Mazher, M.,2017

Tallon-Baudry, C., 1999; Palva, S., 2011, Spitzer, B., and Haegens, S. 2017; Coelli, S.,2015; Kakkos, I.,2019; Mapelli, I., and Özkurt, T. E. 2019; (Pope, A. T.,1995)

Fernandez **Rojas** R, Debie E, Fidock J, Barlow M, Kasmarik K, Anavatti S, Garratt M and Abbass H (2020) Electroencephalographic Workload Indicators During Teleoperation of an Unmanned Aerial Vehicle Shepherding a Swarm of Unmanned Ground Vehicles in Contested Environments. *Front. Neurosci.* 14:40. doi: 10.3389/fnins.2020.00040

| Indicator             | Type of cognitive<br>behavior                        | Description                                                                                                                                                 |
|-----------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Theta                 | Workload,<br>vigilance, and<br>concentration.        | Theta spectral power is thought to increase with increase cognitive resources demand.                                                                       |
|                       |                                                      | Theta increases in tasks requiring a<br>sustained focus of concentration and<br>vigilance.                                                                  |
| Alpha                 | Workload,<br>cognitive fatigue,<br>and attention.    | Alpha band increases in relaxed<br>states with eyes closed and<br>decreases when the eyes are open.                                                         |
|                       |                                                      | An increase in alpha power is related<br>to lower mental vigilance and<br>alertness.                                                                        |
| Beta                  | Workload,<br>visual attention,<br>and concentration. | An increase in beta power is<br>associated with elevated mental<br>workload levels during mental tasks<br>and concentration.                                |
|                       |                                                      | Beta band activity reflects an arousal<br>of th <mark>e visual system</mark> during increased<br>visual attention.                                          |
| Beta<br>Alpha + Theta | Mental Effort,<br>vigilance, and<br>attention.       | It has been used to study alertness<br>and task engagement, mental<br>attentional investment, and mental<br>effort.                                         |
| Theta<br>Alpha        | Workload,<br>mental effort.                          | This index is based in the assumption<br>that an increase of mental load is<br>associated with a decrease in alpha<br>power and an increase in theta power  |
| Theta<br>Beta         | Working memory,<br>attention, and<br>sleepiness.     | This index is based in the assumption<br>that an increases in alertness and<br>task engagement result in an increas<br>in beta power and a decrease in thet |

power.

# **Cognitive Load and Task Engagement**



### Task Load Index

- Ratio of the mean medial frontal theta power to the mean parietal alpha power.
- 'Brainbeat'
- Frontal  $\theta$  PSD  $\uparrow$  and Parietal  $\alpha$  PSD  $\checkmark$  with task difficulty
- mental fatigue, mental workload, demands on cognitive resources, task difficulty, working memory, concentration, lower mental vigilance and alertness, a loss of cortical arousal

(Holm A., 2009; Hockey G., 2009; Gevins A et al, 2003; Bailey N.R. 2006; Prinzel L et al, 2003; Kamzanova AT, 2011); (Lansbergen et al) Young M. S. 2005, Kathner I, 2014; Fairclough S, 2004 ((Vidulich, M. A. 2012; Xie J, 2016; Antonenko, P 2010; Borghini 2012; Parsuram, 2002 ,Major H.A., 2014) Ismail L et al, 2002)<sup>69</sup> Krause C. et al 200

### Engagement Index

 $\frac{\beta}{a+\theta} \quad \frac{\beta}{\alpha} \quad \frac{1}{\alpha}$ 

#### Introduction

"sustained, engaged <u>attention</u> to a task requiring mental effort" "the extent for willingness to take on task, including amount of efforts and how long they persist **Development** 

Pope and his Adaptive System and further work by Freeman

#### • Importance and Factors

information-gathering, visual processing, and allocation attention.

#### Method of Calculation

Multiple EEG indices and montages, Comparison studies

#### Various Application : Education, Gaming, Automobile, Machinery to Missiles!

Pope AT, Bogart EH, Bartolome DS. Biocybernetic system evaluates indices of operator engagement in automated task. Biol Psychol. 1995 May 1;40(1):187–95.

Freeman FG, Mikulka PJ, Prinzel LJ, Scerbo MW. Evaluation of an adaptive automation system using three EEG indices with a visual tracking task. Biol Psychol. 1999 May 1;50(1):61–76.

Coelli S, Barbieri R, Reni G, Zucca C, Bianchi AM. EEG indices correlate with sustained attention performance in patients affected by diffuse axonal injury. Med Biol Eng Comput. 2018 Jun 1;56(6):991–1001.

(Corno and Mandinach <u>1983</u>) , (Richardson and Newby <u>2006</u>; Walker et al. <u>2006</u>) Pope et al(1995); Freeman (1999) Berka C (2007) Coelli S (2015,2018)

# Laboratory Studies

2 Back

Medium

3 Back





# Automotive Study















Figure 13. Mean response times ( $\pm$ SEM) of the general-population participants during (solid symbols and lines) and immediately after (open symbols and dashed lines) vibration at each of the 5 levels for 10-pt (red) and 14-pt (blue) font. Note the three points with significant (p < 0.05) increases over baseline. Note also the fact that performance after vibration (dashed lines) is



### Human Space Flight Application

# How it works - Cognitive Load Estimation from Ocular Parameters

### Dataset preparation

Analysed and measured ocular parameters and took average of each parameter in tagged time duration

➢We have 6 features and 1 prediction vector, i.e., dataset dimension is (26 × 6)

# Average value of parameter corresponding to an event



# Training and Testing

| STDPL    | SMSSL    | LPFL     | MedianSI | sacl     | sacr     | Class |
|----------|----------|----------|----------|----------|----------|-------|
| 0.706459 | 1.137524 | 1.828027 | 49.3185  | 7.528443 | 5.505418 | 0     |
| 0.987355 | 1.530836 | 2.653351 | 8.010019 | 6.559692 | 7.233281 | 0     |
| 1.05791  | 1.684927 | 2.832962 | 20.94228 | 41.93676 | 23.30592 | 0     |
| 1.364831 | 2.120465 | 3.673532 | 5.846828 | 6.214595 | 3.726455 | 0     |
| 0.952527 | 1.495051 | 2.561194 | 12.53268 | 14.98782 | 5.575253 | 0     |
| 1.004906 | 1.581594 | 2.685834 | 14.80185 | 12.73494 | 4.306997 | 0     |
| 1.155556 | 1.794817 | 3.104505 | 7.088327 | 11.33383 | 9.864231 | 0     |
| 1.068594 | 1.672585 | 2.871536 | 17.12084 | 25.50885 | 29.48941 | 0     |
| 0.997523 | 1.554821 | 2.762956 | 7.757654 | 8.026166 | 7.050217 | 0     |
| 0.866554 | 1.349139 | 2.350035 | 18.08792 | 7.976758 | 6.305152 | 0     |
| 0.90166  | 1.403927 | 2.439939 | 9.771493 | 10.49378 | 9.735114 | 0     |
| 0.90389  | 1.403503 | 2.425858 | 4.601533 | 2.775808 | 3.795692 | 0     |
| 1.063928 | 1.655209 | 2.866627 | 10.89931 | 16.40668 | 20.90531 | 0     |
| 0.700745 | 1.091478 | 1.906794 | 57.6819  | 26.58492 | 12.54121 | 1     |
| 1.146462 | 1.811556 | 3.081482 | 14.24862 | 16.74549 | 15.16804 | 1     |
| 1.254093 | 2.001666 | 3.385174 | 30.20105 | 34.23355 | 23.86729 | 1     |
| 1.401125 | 2.194649 | 3.784753 | 7.342054 | 10.08158 | 7.269943 | 1     |
| 1.040266 | 1.637844 | 2.801202 | 13.30015 | 19.27478 | 14.13997 | 1     |
| 1.081412 | 1.68687  | 2.910298 | 17.16687 | 15.67151 | 7.225739 | 1     |
| 1.243439 | 1.93863  | 3.351217 | 12.71217 | 17.34932 | 14.89335 | 1     |
| 1.072975 | 1.708304 | 2.939804 | 20.14046 | 28.33814 | 30.513   | 1     |

| STDPL    | SMSSL    | LPFL     | MedianSI | sacl     | sacr     | Class |
|----------|----------|----------|----------|----------|----------|-------|
| 0.706459 | 1.137524 | 1.828027 | 48.4645  | 5.961252 | 5.826803 | 0     |
| 0.702569 | 1.107083 | 1.889691 | 38.65474 | 26.72293 | 13.261   | 1     |
| 0.698922 | 1.075874 | 1.923896 | 27.969   | 20.62204 | 18.13298 | 1     |
| 1.00639  | 1.557407 | 2.668574 | 6.824375 | 6.772009 | 3.762227 | 0     |
| 1.01435  | 1.572846 | 2.678924 | 6.879444 | 6.090487 | 8.12065  | 0     |
| 0.981585 | 1.518262 | 2.643635 | 5.218889 | 6.337558 | 9.006004 | 0     |
| 0.947095 | 1.474827 | 2.622272 | 13.11737 | 7.038713 | 8.044243 | 0     |
| 1.022034 | 1.681122 | 2.742683 | 28.75488 | 38.64873 | 25.47953 | 1     |
| 1.111368 | 1.762064 | 3.064896 | 30.21846 | 30.45515 | 22.7577  | 1     |
| 1.263466 | 1.991384 | 3.372473 | 18.605   | 18.54446 | 17.14362 | 1     |
| 0.943755 | 1.482271 | 2.522211 | 4.28744  | 5.055612 | 13.14459 | 1     |
| 1.286281 | 2.018722 | 3.426783 | 4.154595 | 7.432819 | 6.003431 | 1     |
| 1.25368  | 1.971348 | 3.553604 | 4.87398  | 11.33995 | 9.338781 | 1     |
| 1.140585 | 1.790685 | 3.063587 | 12.22103 | 12.06637 | 15.58572 | 1     |
| 1.214173 | 1.902103 | 3.288128 | 4.102436 | 12.65823 | 15.30422 | 1     |
| 1.082814 | 1.704302 | 2.876858 | 9.116888 | 10.02004 | 9.733753 | 1     |
| 1.072113 | 1.687796 | 2.878466 | 26.00818 | 54.86076 | 32.34951 | 0     |
| 1.156814 | 1.836831 | 3.117295 | 18.97778 | 51.02551 | 23.67851 | 0     |
| 1.050196 | 1.649141 | 2.80376  | 16.90274 | 38.69246 | 22.84857 | 0     |
| 1.043542 | 1.655777 | 2.795555 | 21.90934 | 27.01621 | 20.11207 | 0     |
| 0.966884 | 1.59509  | 2.569736 | 20.91336 | 38.08887 | 17.54093 | 0     |

Training Data (26 × 6)

Test Data (128 × 6)

# Sample Prediction

| IPython console                                                                                                                                                | 8 ×   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Console 1/A 🗵                                                                                                                                                  | 🔳 🖉 🖏 |
| 0.361334214380169, 0.36801489488426997, 0.3561004541979096, 0.11060374493385947, 0.09445010278782445, 0.20094260571898273 => 0 (expected 0)                    |       |
| [0.7019738603303165, 0.7166484199694302, 0.7184630006357013, 0.08036529680365295, 0.11775416305363998, 0.10984961972201632] => 0 (expected 0)                  | -     |
| [0.5864920140647172, 0.6039534474640601, 0.598568646743004, 0.15580462609476753, 0.153888900109501, 0.13346826990047744] => 0 (expected 0)                     |       |
| [0.352215120513522, 0.3565815839745744, 0.3517689286445165, 0.10942596216568817, 0.10710436746321106, 0.08208151932064538] => 0 (expected 0)                   |       |
| [0.30695937411626373, 0.3844861880204743, 0.31040512042961543, 0.4107526226300086, 0.6885852598827314, 0.4578485480922916] => 1 (expected 0)                   |       |
| [0.040487219162712695, 0.04964323865859199, 0.053615692405943105, 0.23777784906911337, 0.17876877065674457, 0.22848846193076078] => 0 (expected 0)             |       |
| [0.39475180157067435, 0.40602872799064615, 0.4066277937481979, 0.08104432538791398, 0.16744377810805178, 0.19812603238554605] => 0 (expected 0)                |       |
| [0.38376671106404325, 0.3979733153764139, 0.3948705437610669, 0.21004566210045664, 0.17644148162218906, 0.08590265467936653] => 0 (expected 0)                 |       |
| [0.3176415075937593, 0.3403111699386895, 0.33740715057248694, 0.37068642862489704, 0.37891069921460324, 0.582483145904518] => 1 (expected 0)                   |       |
| [0.23710345349064776, 0.27296114836915997, 0.24581259492100194, 0.3592085164629516, 0.40404244049274407, 0.06134554075204082] => 0 (expected 0)                |       |
| [0.3528791864488703, 0.36087990724197405, 0.3709515891904833, 0.10410522601135672, 0.1692080364696452, 0.19777357292374864] => 0 (expected 0)                  |       |
| [0.2964732174132261, 0.3200188418923765, 0.3080828646483533, 0.19074304107450302, 0.14872398558724934, 0.06141728102846576] => 0 (expected 0)                  |       |
| <pre>[0.3870269838410225, 0.4001656707929947, 0.41226296690461184, 0.4956673403697882, 0.5520086359008187, 0.9132820058501251] =&gt; 1 (expected 0)</pre>      |       |
| <pre>[0.30946449956662403, 0.31638447192573016, 0.32531836331396646, 0.05866596088244414, 0.10096674042965886, 0.13953329557477695] =&gt; 0 (expected 0)</pre> |       |
| <pre>[0.427502924078085, 0.4531363980302542, 0.4396085854411429, 0.5197177290857956, 1.0, 0.8617019730401331] =&gt; 0 (expected 0)</pre>                       |       |
| <pre>[0.32380018818920653, 0.327594719431323, 0.3413317214113323, 0.07508878979393238, 0.09903763550725467, 0.22508762197382517] =&gt; 0 (expected 0)</pre>    |       |
| <pre>[0.4720022825356347, 0.4792792100953035, 0.4924732086845418, 0.12229501780501106, 0.11143517959759786, 0.1568779700778709] =&gt; 0 (expected 0)</pre>     |       |
| <pre>[0.3751316636439159, 0.3950364084279526, 0.3861607114832599, 0.18132272518259493, 0.2879347739283329, 0.37518140096880714] =&gt; 1 (expected 0)</pre>     |       |
| <pre>[0.43134743741411663, 0.4307880749469458, 0.4389197346543421, 0.0366334520334071, 0.19886142269971183, 0.43782558308999375] =&gt; 1 (expected 0)</pre>    |       |
| <pre>[0.19246272699971945, 0.19799158562197994, 0.22445989452966253, 0.3919766021836536, 0.21220317038667738, 0.28571758857591995] =&gt; 1 (expected 0)</pre>  |       |
| <pre>[0.40209660908665534, 0.4098843063750487, 0.41336696956292296, 0.219747585897148, 0.25593580506266717, 0.4797922164493394] =&gt; 1 (expected 0)</pre>     |       |
| [0.19480382804949536, 0.2144069988680778, 0.21847743888123272, 0.0667289253900527, 0.21545697635647199, 0.3096639067638501] => 0 (expected 0)                  |       |
| <pre>[1.0, 1.0, 1.0, 0.0293864168618267, 0.018620411034722957, 0.0] =&gt; 0 (expected 0)</pre>                                                                 |       |
| <pre>[0.5978668861882079, 0.6158348623530373, 0.6101617175569485, 0.13307240704500978, 0.27706291583080783, 0.34004143844003226] =&gt; 1 (expected 0)</pre>    |       |
| [0.45204244916571246, 0.4946636226703568, 0.4589428609571846, 0.4566210045662101, 0.6141409176522841, 1.0] => 1 (expected 0)                                   | =     |
| [0.3947736743927712, 0.429426229870684, 0.40491034268024895, 0.4320542170607295, 0.48299179699367656, 0.5279675672542585] => 1 (expected 0)                    |       |
|                                                                                                                                                                |       |

[Input vector => Prediction:0/1 (Actual (0/1))]

# Calculation of Accuracy

We took Task region as positive and No\_task region as negative

We counted True positive (TP), False Positive (FP), True Negative (TN), False Negative (FN) as follows:

- TP= If parameter > threshold and lies in Task region
- FP= If parameter>threshold and lies in No\_task region
- FN=If parameter<threshold and lies in Task region
- TN=If parameter<threshold and lies in No\_task region
- Accuracy=(TP+TN)/(TP+FP+TN+FN)

Accuracy\_Ind



- Calculated accuracy of each parameter by choosing individual threshold corresponding to No\_task of each driver
- Compared accuracy individual parameters against that of Neural network model to classify

Accuracy\_Univ



- Calculated accuracy of each parameter by choosing universal threshold which is the average of thresholds corresponding to No\_task of each driver
- Compared accuracy individual parameters against that of Neural network model to classify

### Architecture of proposed model



### Dataset preparation



 $T_e$  : End time when driver stopped driving

 $t_n$  : event timestamp



- Followed the guideline of Driver and Vehicle Standards Agency (DVSA), UK to identify developing road hazard
- Calculated L1NS, STDP, LPF, saccade rate, fixation rate and median SI velocity in time window duration of ± 2 secs, ± 3 secs, ± 4 secs, and ± 5 secs around the instances of each developing hazard and secondary tasks
- Comparative chart between different type of road hazards for the set of driving samples used in our system

| Predicted<br>True | Α               | В               | C               |
|-------------------|-----------------|-----------------|-----------------|
| Α                 | $T_A$           | $E_{AB}$        | E <sub>AC</sub> |
| В                 | $E_{BA}$        | $T_B$           | E <sub>BC</sub> |
| С                 | E <sub>CA</sub> | E <sub>CB</sub> | T <sub>C</sub>  |

• Accuracy:  $(T_A + T_B + T_C)$ /# of test samples.

|          | ± 2 secs | ± 3 secs | ± 4 secs | ± 5 secs |
|----------|----------|----------|----------|----------|
| Training | 91.95%   | 94.62    | 92.47    | 84.52%   |
| Test     | 71.15%   | 72.44%   | 70.50%   | 70.51%   |

- We found that our model was abled to classify 28 events out of 39 test events correctly
- Accuracy is 72.44 % with ± 3 secs of time window corresponding to road hazards

Results and analysis



# Conclusion & Acknowledgement

- Cognitive load is estimated through correlation – not measured with unit
- Physiological parameters can be measured and combinations of different parameters results better accuracy than individual parameter
- Cognitive load depends and varies among situation, application and individual – a common minimum trend is useful

