

 A Virtual Reality-Based Digital Twin of
workspaces with Social Distance
Measurement Feature
Abhishek Mukhopadhyay*, G S Rajshekar Reddy*, KamalPreet Singh Saluja*, Subhankar Ghosh*, Naveen Talwar*, Anasol
Peña-Rios+, Gokul Gopal+ and Pradipta Biswas*

*BTIRC /Indian Institute of Science, India
+BT

17th December 2021

Image goes here

Lab Report BT Internal 1

A Virtual Reality-Based Digital Twin of
workspaces with Social Distance
Measurement Feature

The Covid-19 pandemic resulted in a catastrophic loss to global
economies, and social distancing was consistently found to be an effective
means to curb the virus's spread. However, it is only as effective when every
individual partakes in it with equal alacrity. Past literature outlined scenarios
where computer vision was used to detect people and to enforce social
distancing automatically.

We have created a Digital Twin (DT) of an existing office and laboratory
space for remote monitoring of room occupancy and automatically
detecting violation of social distancing. To evaluate the proposed solution,
we have implemented a Convolutional Neural Network (CNN) model for
detecting people, both in a limited-sized dataset of real humans, and a
synthetic dataset of humanoid figures.

Our proposed computer vision models are validated for both real and
synthetic data in terms of accurately detecting persons, posture and
intermediate distances among people. We presented two applications of
the work in estimating maximum occupancy of an arbitrary shaped room
maintaining social distancing and developing synthetic dataset for non-
conventional traffic participants in the context of autonomous vehicles.
Finally, we used intermittent layer and heatmap based data visualization
techniques to explain the failure modes of a CNN.

1. Introduction

The CoVID-19 pandemic is considered to be one of the worst

disasters for humanity after the Second World War. Social

distancing, wearing masks and frequent sanitization of ones’

hands in common spaces became the norm. Social

distancing has been proved to be effective in hindering virus

transmission by increasing the physical distance between

people or reducing the congestion in socially dense

community atmospheres such as schools, colleges, and

workplaces [15, 3, 19, 16]. Existing approaches of

enforcement of social distancing involve manual inspection

of common spaces using personnel. Most of such methods

require several personnel on the ground doing laborious job

of monitoring people around them. Automating the

monitoring of human beings and enforcing social distancing

saves humongous effort from such personnel. Efforts are

already underway to use computer vision techniques to

perform tasks like using traditional and thermal cameras to

measure body temperature and to identify excessive

pedestrian flow at public places. Enforcing social distancing

involves detecting the humans in a space and measuring the

distances between them. Existing approaches using object

detection datasets [41, 11] and models [58, 85] enable us to

detect humans but monitoring the distance between two

individuals is a challenging problem. Existing datasets in

object detection and allied fields focus on the entity

identification or relation between two entities like in the case

visual captioning [60] but relating two entities using a physical

metric is a novel challenge.

In this context, we propose a Digital Twin of a workspace

through an interactive and immersive Virtual Reality

Experience. Users can move around the space virtually and

remotely, as they would in the real-world. The benefits of

using a DT as a visualization medium are multifold. Firstly, it

provides an interactive and intuitive virtual experience that

can also be used in VR. Users can navigate around the virtual

environment as they would in the real world. Secondly, a

virtual environment protects the privacy of the occupants

Lab Report BT Internal 2

through abstract humanoid figures than a direct video feed.

In the virtual world, a virtual camera is simulated at the same

position from where the real-world feed was recorded. We

then map the two-dimensional centroid coordinates onto

the virtual camera’s feed. Moreover, through a Ray cast

operation, the two-dimensional coordinates are mapped to

the three-dimensional coordinates of the virtual world, and

hence people’s movements are simulated in real time.

The digital twin is equipped with weather monitoring and

room occupancy measurement feature. We utilized existing

object detection model and used transfer learning

technique to detect persons in workspaces. We recorded

images under 32 combinations including different positions

and postures. We also undertook posture estimation to

improve accuracy of the digital twin and help in explaining

violation of social distancing. For example, whether more

than one person is sitting together or sitting and standing or

only standing- all indicate different activity trend for violating

social distance. Policies can be made accordingly like

prohibiting people to eat together in office spaces. We

determined the postures of humans using the recorded

dataset using interior-hip angle obtained from existing state-

of-the-art pose estimation model and this method classifies

whether a person is sitting or standing with 84% accuracy.

After mapping real world position and posture to Digital Twin,

we converted the bounding box predictions from person

detection module into real world dimensions, followed by an

investigation into the effectiveness of our proposed

approach using both virtual and real-world data. We found

a correlation of 0.82 between actual and measured distance

with 𝑅2 = 0.67.

Further, we investigated finding the optimal number of

people that can be accommodated in office space based

on the standard social distancing guidelines. Finding the

maximum number of people that can fit in a defined space

while maintaining social distancing is challenging for

numerous reasons. This problem is modelled as a classical

circle packing problem [77], when each individual is

depicted as the center of a circle, where the circles are to

be arranged in a given space such that their centers stay

within the bounds, and simultaneously avoid other objects

(such as furniture) intrinsic to that space. These categories of

problems cannot be solved in polynomial time, thereby

falling under the NP-Hard category. Our approach is based

on a heuristic algorithm which aims to provide close

approximate solutions. We also accounted for the fact that

with the obstacles in a workplace such as pieces of furniture

and building structures, the polygon to pack may resemble a

convex highly irregular structure. We adopted basic

concepts of circle packing algorithm [83] and modified it for

irregular shapes as discussed in further detail in Section 6.1.

Additionally, we used data visualization techniques to

explain the working of a complex machine learning system

like a Convolutional Neural Network (CNN) to help us to

debugging the performance of the system.

The key contributions of this work are as follows:

• We proposed a validated technique for synthetic data

generation using photo realistic Digital Twin.

• We validated accuracy of person detections between

real and synthetic image and in both cases, it was found

to be more than 91%.

• We designed an algorithm for estimating the maximum

room occupancy under social distancing norms via

circle packing techniques and compared the results to

that of proved optimal packing structures.

We briefly discuss about Related Work in section 2, followed

by the methodologies of the proposed approach in section

3. We discuss about developing a VR based simulator in

section 4. We discuss in detail about validating the proposed

models of person detection, pose estimation and social

distance measurements in section 5 followed by applications

and visualization techniques in sections 6 and 7, respectively.

The penultimate section highlights the utility and value

addition of the system, followed by concluding remarks.

2. Related work

2.1 Digital Twins

The first digital twin (DT) implementation dates back to NASA's

Apollo program [17], where they were used in live missions to

replicate the problem scenarios faced by the crew in space.

NASA [21] formalized the DT definition in 2012 as an

integrated Multiphysics, multiscale, probabilistic simulation of

an as-built vehicle or system that uses the best available

physical models, sensor updates, fleet history, among other

available data to mirror the life of its corresponding flying

twin. Tao et al. [63] highlighted the state-of-the-art in industrial

DTs, according to the which, DTs have been implemented in

three key application areas (i) product design, (ii)

production, and (iii) prognostics and health management

(PHM), the majority of which was focused on PHM. Khajavi et

al. [35] explored a DTs' use in a smart building scenario by

replicating a part of its front facade. The facade was

visualized by assigning different yellow shades to the

respective lux values received from the sensor.

Several commercial solutions have also emerged due to

the diverse possibilities and benefits. One example is the

Azure Digital Twins (ADT) [36], a cloud-based service that

aimed to democratize DT deployment by providing a

software as a service solution. Steelcase, a company known

for designing workspaces, developed a space-sensing sensor

network using ADT [45]. By implementing a suite of wireless

Lab Report BT Internal 3

infrared sensors, they generated analytics on how their

spaces were being utilized, which in turn was used to

enhance reliability and efficiency. ICONICS [44] also utilized

ADT to create a virtual representation of a physical space to

improve energy efficiency, optimize space usage, and lower

costs. Nikolakis et al. [51] utilized digital manikins for simulating

human activities in a DT of a factory floor. It was concluded

that the twin could help maintain better ergonomics among

the shop floor workers.

2.2 Digital Twins in Covid-19

Through real-time sensor data and accurate simulations,

digital twins could play a vital role in containing the

coronavirus’ spread of the coronavirus. For example, Milne et

al. [96] modeled a city in Australia to understand the

effectiveness of social distancing, and they reported that it

contributed a substantial factor in flattening the epidemic

curve. A consortium among Aalto University, Finnish

Meteorological Institute, VTT Technical Research Centre of

Finland, and the University of Helsinki [97] studied the

transmission of the virus by modeling possible scenarios in

indoor spaces. They examined various situations like when a

person coughs in aisles in grocery stores. A blog post from

Buro Happold [98] concluded that the traditional workplace

model is not effective in managing social distancing. Unity

Technologies [99] built an open-source simulator concept for

visualizing the spread of Covid-19 in a fictitious three-

dimensional grocery store environment. Industry big players,

Google and Amazon, have also added their efforts to make

social distancing hassle-free in indoor and outdoor spaces.

Google released a web application called SODAR [100] that

uses WebXR technology to help workers maintain the

necessary distance. It worked by drawing a 2-meter circle

around the user as he or she walked and alerted the user if

another person were to enter this circle. Amazon [101] has

also developed a mirror-like tool that helps employees

observe physical distancing in an office workspace. It

applied Augmented Reality and Machine Learning

techniques to provide visual feedback to the employees. It

portrayed a person inside a red circle if they were to enter

within 6-feet of any other person.

2.3 Person Detection

Although earlier work [13] explored enforcement of social

distancing through DTs or 3D simulations, there is not much-

reported work on rigorous validation of the system. Pedestrian

or person detection is one of the key research areas in the

computer vision domain. It has applications in autonomous

vehicles, video surveillance, robotics, among others. In the

early stage of pedestrian/person detection research, people

used Haar wavelet features [54, 46, 73] or component-based

pedestrian detection [46, 79, 75]. With the increase of

computational power of the systems, people started to use

gradient-based representation [20, 86, 75] and Deformable

Part based Model (DPM) and its variants [14, 20, 59]. Dalal

and Triggs [10] used a normalized histogram of orientation

features to make feature descriptors. They used linear support

vector machines (SVM) to train the descriptors for detecting

pedestrians. Zhu and others [86] used HOG features

combined with a cascade-of-rejectors approach to make

person detection faster and more accurate. Felzenszwalb et

al [14] followed the “divide and conquer” detection

philosophy, where the training could be considered as the

learning of a proper way of decomposing an object, and the

inference could be considered as an ensemble of detections

on different object parts. Later they developed a grammar

model for person detection [20]. They constructed the

grammar model to describe of the number of visible people.

Sadeghi and Forsyth [59] speeded up the performance of

DPM by introducing various mechanisms. To speed up

feature extraction, they used HOG features and interpolated

templates.

Hosang et al [23] first used Convolutional Neural Networks

(CNN) for pedestrian detection. They compared different

sized ConvNets with architectural differences and

parameters. Although Fast and Faster RCNN methods

performed well for general object detection, their

performance lacked in detecting smaller pedestrian due to

the low resolution of the feature map. Zhang et al [85]

addressed this issue by feature fusion using a boosted forest

technique. Cao et al [5] introduced a unified Multi-layer

Channel Features (MCF) which integrated handcrafted

features (HOG + LUV) in each layer of the CNN. Then they

used multi-stage cascade AdaBoost to learn from features

extracted in the layers. Hu et al [25] used feature maps

extracted by CNN as input features for assembling boosted

decision models to detect pedestrians. Tian et al [64]

optimized pedestrian detection task with semantic

segmentation to improve hard negative detection. To

overcome the problem of occlusion, illumination and lighting

variance, Xu et al [81] proposed a cross-modality learning

framework with input images from RGB camera and thermal

camera. Wang et al [76] also addressed the occlusion

problem by proposing bounding box loss function named

repulsion loss function. Apart from computer vision, recent

efforts also investigated estimating room occupancy by

listening Wifi probe emitted from mobile phones and use it to

measure slip and fall risk [89].

2.4 Human Pose Estimation

Human pose estimation (HPE) had been extensively studied

in computer vision. 2D HPE methods are categorized into

single-person and multi-person settings. The former setting has

two popular approaches: (I) Regression methods that directly

map from input images to body joints; (II) Body Part Detection

methods that has two steps: the first is to generate heat maps

Lab Report BT Internal 4

of key points for body part localization and the second step

involves assembling the detected points into the whole-body

skeleton. There are two deep learning-based approaches for

multi-person setting as well. (I) Top-down methods [55, 27, 80,

62, 39, 47, 74, 26, 4, 84] that detect all people first and then

utilize single-person HPE methods to construct key points for

each; (II) Bottom-up methods [6, 56, 30, 29, 49, 18, 65, 37, 50,

32, 8] first detect the body key points without knowing the

number of people, then group the key points into individual

poses. Several of these systems reportedly failed to detect

persons due to occlusion or truncation. Iqbal and Gall [31]

built a convolutional pose machine (CPM)-based pose

estimator to estimate the joint candidates and used Integer

linear programming (ILP) to detect poses even in the

presence of severe occlusion. Numerous works used top-

down approaches, but bottom-up processes are faster than

the top-down approaches since they do not detect posture

for each person. Cao et al [6] built a detector named

OpenPose that uses a CPM to predict joints via heatmaps

and Part Affinity Fields (PAFs) to associate the key points to

each person. Although OpenPose achieved high-

performance in high-resolution images, they reported a poor

performance with low-resolution images and occlusions. To

address this problem, Kreiss et al [37] proposed BifPaf that

uses Part Intensity Field (PIF) to predict the locations of body

parts and a Part Association Field (PAF) to represent the joints

association. These methods outperform previous OpenPose

methods on low-resolution and occluded images.

2.5 Digital Twins as Synthetic Data

Synthetic data has exhibited propitious outcomes in the past

[66, 22] and the turnaround time for generating labelled data

for a new product variant is also drastically reduced [61]. A

further benefit of using synthetic data is the ability to rapidly

iterate without undergoing a time-consuming data

acquisition process. However, disparities with real world

scenario prevent researchers from depending on synthetic

data entirely. Tremblay [67] aimed to bridge this gap

between real and synthetic data by employing a technique

known as Domain Randomization. Recently, Unity

Technologies introduced a tool called the Perception

package [1], which made it simpler to generate synthetic

datasets. They tested an object detection model trained with

data produced by the perception package on the Faster R-

CNN [82] and found that it performed better with objects that

had complex orientations, configurations, and lighting

conditions than the model trained with real world data.

Microsoft AirSim [43] is a tool/simulator used for the sole

purpose of testing drones and autonomous vehicles in a VE.

However, it was designed as more of a testing and evaluation

platform than to generate synthetic data. UnrealROX [42] is

another tool built over the Unreal engine to generate

photorealistic synthetic datasets but targeted more towards

robotic vision researchers. Unity Technologies [33] also

implemented a similar approach for vision-based robotics in

the Unity engine. The ParallelEye dataset [40] carried out

similar efforts of generating synthetic datasets for training

traffic vision models in the Unity engine. Exploiting the virtual

nature of these datasets, they simulated various

environmental conditions and camera parameters with the

goal of generating diverse data. Although it was found that

a Variable AutoEncoder (VAE) can detect camera rotation

and emotion of Frey face, but neither VAE [2, 7, 52] nor

Generative Adversarial Network (GAN) [12, 28, 34] can add

multiple objects and persons in an image by keeping a few

features constant and varying others. In summary, synthetic

data has proven to be a successful alternative for collecting

data to train neural networks.

2.6 Visualization of CNN

Although CNN based object recognition has achieved

impressive performance, working with CNNs poses the

challenge of working with a black box. The features learned

in different layers of the CNN are difficult to understand unless

we can visualize how they work. Explainable AI (XAI) looks to

overcome these concerns, providing transparent models

(white box) that allow humans to understand how an AI

decision has been made; therefore, they do not rely on data

only, but can be improved by human observations [102]. A

brief literature survey on the application of CNN visualization

techniques can be found in [103].

2.7 Summary

In summary, past literature has primarily focused on using DTs

in industrial scenarios [63]. While there is literature on using

twins for workspaces, only Nikolakis et al. [51] focus on

mapping a person's position and posture using expensive

depth cameras. Fuse et al [91] proposed a robot navigation

model to determine robot’s trajectory and to help robots

maintain distance in robot-human space. Ratsamee et al

[92] also proposed a robot navigation model in robot-human

space based on human motion and their facial orientation.

Synthetic data has also proven to be a successful alternative

to generating annotated datasets and particularly essential

during a pandemic. Moreover, we infer that the existing

state-of-the-art object detection models fail to detect

humans with the same degree of accuracy as they do on

general object detection. Numerous approaches were

proposed to overcome this limitation. Similarly, even though

various datasets and approaches exist for human pose

estimation, techniques to estimate poses under large-

occlusion in a multi-person setting, fall short of their single-

person counterparts. Besides, the existing approaches rely on

estimating key points to determine the pose rather than a

direct posture mapping like standing, sitting, walking and so

Lab Report BT Internal 5

on. In this work, we address all these limitations using

approaches detailed in the subsequent sections.

3. Our Proposed Approach

There has not been a unified approach when it comes to

modeling Digital Twins in the past literature, and according to

Tao et al. [63], a generic framework is critically needed. They

also outlined five dimensions that are to be addressed while

modeling a twin: a physical part, a virtual part, data, a

connection between these, and a service modeling. We

designed a DT of a laboratory space using the Unity 3D [68]

game engine and its modelling tool, Probuilder [104]. The twin

served as a three-dimensional illustration of the physical

space whose dimensions were accurately mapped to the

twin. Furthermore, the furniture and other objects in the

physical space were also replicated in the virtual world. To

improve the VE's photorealism, baked global illumination was

used, which entails computing the lighting behavior and

characteristics beforehand and storing them as texture files;

this technique also reduces the computational load present

in real-time global illumination. Additionally, Physically Based

Materials or PBR [38] were used as they physically simulate

real-life materials' properties such that they accurately reflect

the flow of light and thereby achieve photorealism. We

deployed the twin on a Virtual Reality (VR) setup, specifically,

the HTC Vive Pro Eye [24] since VR allows for immersive and

interactive virtual walkthroughs.

The physical and the virtual world are connected through

sockets. Specifically, we map the weather properties of the

space, such as Temperature and Humidity measured via the

DHT-11 sensor. Furthermore, through a Ray cast operation,

the two-dimensional coordinates are mapped to the three-

dimensional coordinates of the virtual world, and hence

people’s movements are simulated. To ensure the twin was

as photorealistic as feasible for data generation, we

employed Unity's Ray tracing [72] tools, instead of the

traditional Rasterized renderer. Ray tracing is a rendering

technique that involves tracing individual rays of light as it

bounces off virtual objects in the scene. Specifically, we used

Unity's path tracing algorithm [71] with a sample count of

4096, i.e., the algorithm traces 4096 rays of light and requires

4096 frames to generate a single image. Hence, if the

simulation runs at 30 frames per second, it will take around 2.3

minutes to generate one image. To automate the process

and increase the dataset’s diversity, we utilized Unity's

perception package. We were able to generate high-fidelity

ray traced synthetic datasets of humanoids in a sitting or

standing pose through the perception package and its in-

built randomizer. By exploiting this randomizer, the humanoids

pose, i.e., the position and orientation, were changed

according to a random seed with each iteration. By

randomizing their pose on a fixed z-axis, we were also able to

ensure that the humanoids did not clash with one another.

3.1 Planned Physical Setup

In the planned deployment, each meeting room will have

a set of weather monitoring sensors and cameras (Figure 1).

Data from sensors and cameras will be collected and

processed on a local computer. Processing will involve noise

cancellation from sensor readings through low pass filtering

and calculating the number of people inside each meeting

room using a Convolutional Neural Network (CNN). The

processed data will be sent to a central computer equipped

with a high-end Graphics Processing Unit (GPU) using network

sockets. The VR-based Digital Twin will be deployed on this

machine and will be updated with a real-time sensor feed. A

demonstration video of the implementation can be found at

https://youtu.be/XGYvDnwbyhM while a web version can be

found at http://cambum.net/BT/BTWebGL/

Figure 1 below shows a schematic diagram of the planned

deployment of the Digital Twin implementation, gathering

real-time data from a camera and IoT sensors like

temperature, humidity. A similar setup was earlier deployed

for smart manufacturing capabilities [105].

Figure 1: Planned setup of the VR-based Digital Twin.

3.2 Person Detection

We developed the Digital Twin for measuring occupancy of

laboratory and enforcing social distancing. For detecting

presence of humans in the laboratory workspace, we used

ImageAI python library for custom object detection training

using YOLOv3 architecture. We chose YOLOv3 as our person

detection model based on comparison studies that

suggested that YOLOv3.

• Is better than Faster RCNN, Mask RCNN, SSD, and

RetinaNet in terms of accuracy and latency [48, 57,

90].

• Performed better than other models on artwork or

synthetic images when the model was fine-tuned

with artwork [58].

We used a transfer learning technique to fine-tune the model

with a person dataset downloaded from Open Images

http://cambum.net/BT/BTWebGL/

Lab Report BT Internal 6

Dataset [53]. This dataset contained both real images as well

as artwork images. We used 2022 images in total with the

label 'person', showing single or multiple individuals. We

separated the total dataset into an 80:20 ratio for training

and validation. We prepared the dataset by converting

annotation files into xml format. The existing annotation files

were in Darknet format, which is the actual backend used for

training YOLO. We trained the model using Keras with

Tensorflow backend. Model was trained for 200 epochs with

batch size of 4 using NVIDIA GeForce RTX 2070 GPU.

3.3 Pose Estimation

We developed the DT for a laboratory space where sitting

and standing are the two common postures. We undertook

a study to classify and to reciprocate these two postures in

the DT to make it more realistic. We used a PyTorch

KeypointRCNN model with a ResNet50 backbone to detect

key points of the human body trained with ImageNet and

COCO 2017 dataset after comparing with other pose

estimation models like AlphaPose, OpenPose. The model

takes input of a list of tensors, shapes, and range between [0-

1]. During inference, and returns a list of dictionaries. The fields

of dictionaries are as follows:

• Predicted boxes are in [x1, y1, x2, y2] format, with 0≤

x1<x2≤w and 0≤ y1<y2≤h.

• Predicted labels and score of those labels for each

image.

• Location of predicted key points.

The model may predict multiple bounding boxes and sets of

key points for a prediction. We used the threshold value of 0.9

to filter out confident estimates and to eliminate multiple

predictions.

3.4 Mapping Position and Posture to Digital Twin

We mapped each person's position and posture (sitting or

standing) to the twin via virtual humanoids. This way we are

not only able to visualize and generate analytics of how

spaces are being used, but we are also respecting the

privacy of everyone as we are not showing face or other

identifiable personal features. We mapped virtual camera's

position and orientation to the real-world camera. The

PyTorch KeypointRCNN processes the real-world camera's

video feed, through which the centroid values, i.e., the pixel

position of the individuals on the screen space, was

extracted. This data was packed into a JSON format and is

relayed to the DT in real-time via UDP sockets. Since the real-

world camera's view and the virtual camera's view are

identical, the pixel positions (centroids) from the real-world

camera can be mapped with ease to the virtual camera's

screen space. We define a three-dimensional vector by

substituting the centroid for the x and y values and the virtual

cameras near clip plane as the z value. We then subtract

from this vector, the virtual camera's position vector and

normalize the result. The result is a direction vector that

establishes the direction to travel to the centroid point from

the virtual camera, or the direction in which to place the

humanoid.

The main Unity feature used is the NavMesh [69] AI surface

and agent. Given a layout with multiple obstacles, NavMesh

automatically generates accessible and non-accessible

surfaces for an agent to walk or occupy. Once this NavMesh

surface is generated, the NavMesh agents (the virtual

humanoids in this case) automatically avoid obstacles while

moving from one point to another (also avoid colliding with

one another). A* algorithm is used to compute the path

between source and destination. Here, the respective

destinations are continuously updated from the output of

Python script which provides real-time positions of persons

detected in the physical world. The virtual humanoids also

have an animator controller (known as third person

character controller) and a set of sitting, standing, and

walking animations which are triggered correspondingly

based on the posture and movements of persons detected

and provided by the Python script.

We aimed to add animations (life-like movements) to the

humanoids which would be spawned in the virtual world

based on the detection and mapping done in the real world.

Using digital humanoid models, design engineers can

position and manipulate operators of varying anthropometry

within the simulated work environment. Digital humanoid

models are composed of more than 90 different links/joints

and 140 degrees of similar to that used in many

biomechanical models of the human body [93]. The

humanoid model's armature (base skeleton rig) is rigged

automatically with the motion capture data [94] to fit real life

poses which follows the ergonomics of any work environment

and hence mimic real-life movements. (Figure 2). These

skeletal animations were imported into the unity project and

mapped onto the existing humanoids and were

called/executed based on the movements in the real-world

detection (Figure 2). The various animations used in this use

case included idle, walking, sitting, stand to sit and sit to stand

animations to mimic the poses which may occur in a typical

working environment. The animations were exported in the

form of fbx format from [2] and were imported into unity

game engine where all the animations were imported into an

animator which would control the flow of the animations to

be executed based on the actions being performed by

humans in the real world. The Unity animator system provides

an animation controller [95] which allows one to arrange and

maintain a set of animation clips and associated animation

transitions for a character or object. It allows for changing

Lab Report BT Internal 7

multiple animations and switching between them when

certain game conditions occur. In our case humanoid would

switch from a walk animation clip to a sitting animation clip

whenever a person would sit on a chair in the real-world.

(a) (b)

Figure 2: Movement of humanoids in virtual environment. (a) Humanoid is
walking towards a chair. (b) Sitting posture of humanoid.

3.5 Social Distance Measurement

Bertoni [87] worked on silhouettes of people in outdoor

environment by using 3D distances. In our case, we measured

distance between persons in indoor environment. Initially, we

fixed a camera at a particular height of the room in real

world. Then we used this height and fixed the camera in

virtual world in such a way so that field of view of the camera

will be same in both virtual and real world. We used trained

model to generate a set of bounding boxes and a unique ID

for each humanoid. To measure distances between persons,

we calculated the distance between persons from bounding

box references generated by YOLO following Punn's work

[57] on measuring distance among pedestrians from video

recorded by road surveillance camera. We calculated

bounding boxes and corresponding centroids for each

bounding box in a frame recorded through the VE. We

computed pairwise Euclidian distance between centroids

(Equation 1) and 𝑝 × 𝑝 matrix, where 𝑝 denoted number of

persons detected at any instance.

𝑑(𝑚, 𝑛) = √∑ (𝑚𝑖 − 𝑛𝑖)2𝑛
𝑖=1 (1)

Where n is two-dimensional space and m, n are two centroids

in 2D space. It may be noted that the present version of our

algorithm does not take posture of a person as input, but we

tested the performance of the algorithm for both standing

and sitting posture.

3.6 Explanation through Visualization

We mapped each person's position and posture (sitting or

standing) To understand how the CNN performs, we

investigated two different types of CNN visualization

techniques:

(I) Visualizing intermediate layers of a CNN model

following Zeiler and Fergus [106]. This visualization

technique was useful to understand how successive

convnet layers transformed their input. It also gave us the

idea of what type of features were extracted by different

filters of different layers of CNN model from input images.

(II) Grad-CAM [107] based visualization aims to

understand which part of the image had a maximum

association in predicting person classes. To obtain the

class discriminative localization map corresponding to a

specific class, we calculated the gradient with for feature

maps of the last convolutional layer. These gradients were

globally average pooled to obtain weights corresponding

to the class, followed by a weighted combination of

activation maps where finally, we applied a ReLU

function. Thus, we obtained a coarse heatmap of the

same size as the feature map in the last convolutional

layer of the CNN model. In the final step, we resized the

coarse heatmap to the input image size and overlapped

on the input image. Thus, the Grad-CAM based heatmap

helped us visualize which part of the image had a

maximum association with the class of interest.

We applied these two techniques on synthetically generated

and real images to understand if there was any difference in

extracting features for predicting persons in the images. In

the following sections, we described our approach for

developing the VR-based Digital Twin and using it to train and

explain the functioning of the CNN in detail.

4. VR Simulator Development

4.1 Modelling

The construction of an accurate virtual twin requires precise

information about the object’s geometrical dimensions and

physical properties. Moreover, there is more than one way of

implementing it. Building Information Modelling (BIM) [108] is

a growing technology in the AEC industry that advances

planning and designing infrastructure by portraying the

building's properties in 3D. BIM is used in several past works

[109, 110], and commercial services such as Tridify [111], PiXYZ

[112], and Unity Reflect [113] to expedite the process of

importing BIM files into game engines like Unity. Another

technique, highlighted by a Siemens patent [114], is the use

of depth scanners for generating a point cloud illustration of

a room and then matching the point cloud data with the

corresponding objects. However, due to the immediate

Lab Report BT Internal 8

lockdown and social distancing measures enforced in the

wake of the Covid-19 pandemic, the above techniques were

not feasible and could not be duly arranged. Hence, we

manually modeled a part of the office workspace with the

aid of an architectural drawing for our approach. We started

with a meeting room that could accommodate a total of 12

people and then continued to the encompassing areas. We

used Probuilder [104] and ProGrids [115] for modeling and

rapid prototyping. The 3D models for the workspace furniture

were procured from the online market TurboSquid [116] and

Sketchfab [117], and were placed in the environment

accordingly.

4.2 Realistic Rendering

Through multiple photographs taken with standard digital

cameras, we were able to ascertain the different materials

that made up the meeting room, and we aimed to replicate

these materials in the twin through Physically Based

Rendering (PBR). PBR materials [38] enable physically

simulating real-life materials’ properties such that they

accurately reflect the flow of light and thereby achieve

photorealism. A PBR material entails several parameters such

as the albedo, metallic and smoothness properties, normal

maps, height maps, diffuse map, occlusion maps, among

others. The respective texture maps used in our twin for the

walls and the floor mat were obtained from freepbr.com.

Global Illumination (GI) is one of the most significant factors

that decide how realistically a twin can resemble a real

object. GI facilitates realistic light rendering by bouncing light

off from surfaces, i.e., it accounts for indirect light in the

scene. We employed Baked GI for our environment, which

entails computing the lighting and generating lightmap

textures beforehand and is therefore computationally

inexpensive during runtime. Its counterpart, Realtime GI,

involves calculating the light during runtime and places a

substantial load on the GPU. Furthermore, Reflection Probes

are placed in the environment to simulate reflections and

strengthen the photorealism. Finally, Unity's Post-Processing

tool is used to implement Anti-aliasing, Ambient Occlusion,

Color-grading, and Auto-Exposure. The final intended result is

shown in Figure 3.

For smoother processing, we optimized the twin by deleting

several unnecessary polygons, such as the height adjuster in

the chairs and the trays underneath the desks. Low-poly

humanoid models were placed in the environment to be

recognized by the person detection model. Their behavior

was driven by Unity's NavMeshAgents [69]. Agents avoid one

other and other obstacles in a scene through spatial

reasoning obtained from a baked NavMesh. We also

enabled Ray traced rendering in the virtual environment by

employing Unity’s path tracing algorithm. In this context,

Physically Based Rendering is a category of virtual materials

which mimic the real-world materials’ physical properties. We

have compared the performance between Rasterized

Rendering and Raytracing.

4.3 Interactive Dashboards

We configured interactive dashboards inside a VR based

workspace simulator. They displayed real-time sensor data

like temperature and humidity, the latest statistics about the

Coronavirus pandemic at the place of deployment. Sensors

were interfaced with the VR machine through their

respective wireless module(s). These wireless modules used a

peer-to-peer connection to communicate with a VR

machine using UDP protocol at a frequency of 1 Hz. Data

obtained from the temperature and humidity sensors are

shown as a separate circular bar (Figure 4(c)). Instantaneous

values were converted to time-series values when a user

dwells using his/her eye gaze using an HTC Vive Pro Eye

headset or when selecting the dial via a hand-controller,

providing a detailed view (Figure 4(b)). The color of the

circular bars changes if the value exceeds a pre-defined

threshold (Figure 4(c)). Any abrupt change in the sensor

readings was also reflected instantly via both visual and

haptic feedback. Haptic feedback is generated through the

hand controller. The live sensor data’s values could be used

further for making decisions regarding air conditioning or

maintaining a room temperature of the office workspace.

(a)

(b)

Figure 3: The Digital Twin rendered with baked global illumination and post-processing using Unity.

Lab Report BT Internal 9

In addition, the dashboard displays real-time statistics from

the Coronavirus pandemic obtained from the Covid19-India

API [https://api.covid19india.org/]. The dashboard shows the

number of active cases for the region wherein the actual

workspace is present. The data was shown as a circular bar

(Figure 3(a)) depicting the number of active cases to date.

When a user dwells using his/her eye gaze, detailed statistics

were shown for the latest phase [54] as a bar graph (Figure

4(b)).

4.4 Connecting CNN to the VR Environment

The physical implementation idea involves processing live

video in a separate computer and sending the number of

people detected in the live video feed into the VR setup.

However, at the present stage of development, and given

the previously mentioned constraints due to Covid-19, we

connected the CNN model for detecting humanoids within

the VR environment via a Real Time Streaming Protocol (RTSP)

connection, streaming the Game View of the Unity camera

to the CNN where the person detection process (as

described in section 5.1) happens. Once the person

detection results are obtained, we filter our predictions using

their corresponding confidence scores. We select the

persons with more than 0.6 confidence score, and if such

person is found, we stream the results back to Unity through

a UDP connection. Currently, there is no in-built option in Unity

to stream its camera view; therefore, a custom solution has

been compiled by us using the FFmpeg module and an RTSP

Server. These functions have been implemented to stream

the Unity view through the RTSP connection. Since the CNN

processing speed would be different from Unity’s streaming

speed, we considered the RTSP buffer’s latest sample to pass

on to CNN. We tested person detection model on the videos

recorded in both real and virtual worlds. The model processes

each frame and localize persons/humanoids if detected in

the frame (as shown in Figure 5). The localization is done by

annotating bounding box around person. Figure 5 shows

each person is annotated with one bounding box is labelled

with number in the figure.

Once Unity receives object results, we add or delete

humanoids inside the virtual environment. Digital humanoid

models are composed of more than 90 different links/joints

and 140 degrees of like that used in many biomechanical

models of the human body [118]. We used Mixamo’s [119]

motion capture data to automatically rig the humanoid’s

armature (base skeleton rig) so that it reflects realistic poses

of a human.

(a)

(b)

(c)

Figure 4: VR Model of the Office Space.

Figure 5: Humanoids are detected by person detection model and
annotated with bounding boxes. Here bounding boxes are turned into red

if social distancing is violated otherwise coloured in green.

4.5 Comparison with Similar Approaches

The ParallelEye dataset [40] took similar effort as ours on using

VR based synthetic dataset for autonomous vehicles.

UnrealROX [42] is another tool built over the Un-real engine to

generate photorealistic synthetic datasets but targeted

more towards robotic vision researchers. The tool focused on

simulating a broad range of indoor robotic activities, in terms

of both object interactions and pose. We extended the idea

for a different use case and compared the system in terms of

accuracy with real dataset. A different way of generating

synthetic dataset uses Variable Auto Encoders (VAE) [120;

121; 122] and Generative Adversial Networks (GANs) [123].

We also compared our approach with the same. We ran the

real images through a GAN implementation. A GAN consists

of a Generator, which tries to fool another network known as

Lab Report BT Internal 10

Discriminator that learns to distinguish between real and fake

images. We used one version of the GAN, called SinGAN

[124], an unconditional generative model that can be

trained on a single image [66]. The model learns the internal

distribution of the image's patches [125; 126; 127; 128] using

multi-scale adversarial training and can generate similar

images of different scales. This model is like the GAN model,

except the training samples are patches of the input image

rather than a set of images, and the network consists of a

pyramid [129; 130; 131] of GANs of different scales. As the

authors of the SinGAN paper claimed, it might produce

unrealistic distorted results on coarser scales. Still, we were

able to generate realistic fake images on finer scales that are

indistinguishable from the real image. At finer scales, the

Generator learns smaller patch distribution than at a coarser

scale, giving better results in smaller scales and preserving the

image's global structure (Figure 6).

There is no existing VAE-based algorithm that takes a single

image and can synthesize fake images as many numbers as

we want. If we have enough dataset, VAE can capture the

distribution and generate more data from the same

distribution. Conventional GAN has problems of non-

convergence [132] and mode collapse [133], and

researchers have improved it over time. Although, SinGAN

model can synthesize more indistinguishable fake images

similar to the original image as shown in figure 6, it offers less

customization compared to VR based digital twin. As shown

in earlier sections, in a digital twin, we can easily change

number of persons, dress colours, number of persons, posture

of persons in an image dataset keeping background and

ambient light constant. Although it was found that a VAE can

detect camera rotation and emotion of Frey face [134], but

neither VAE nor GAN can add multiple objects and persons

in an image by keeping a few features constant and varying

others.

5. Validation

Validation of the entire system and in particular the social

distancing module was challenging due to ongoing Covid 19

restrictions. For example, it would be risky and unethical to

request volunteers to stand or sit in close proximity for

generating training or testing data in the middle of the

pandemic. However, we would not also be able to validate

the system properly if we only have data with limited

participants standing and sitting far apart from themselves.

Hence, we validated all models using both real and synthetic

data. We collected real data after following social distancing

norm and following appropriate ethical approval. We also

generated synthetic data using the VR Digital Twin. For

validation through VR generated synthetic data, we followed

earlier examples of Parallel Eye Dataset [40] and Leban’s [33]

robot workspace but used the previously proposed digital

twin of laboratory space. In the following paragraphs, we

described methods to generate both real and synthetic

data.

Figure 6: Left column: (a) Original input images (1st column); (b) Random
samples from a single image at n=6 (2nd column), n=11 (3rd column), and

n=25 (4th column).

Real Data: We deployed a Logitech HD camera in a fixed

position of the office and laboratory space to get similar view

of the room as seen in the synthetic dataset preparation

setup. To validate person detection model, we recorded

short videos in the physical world (Figure 7(d)) and the virtual

environment (Figure 7(c)). In physical world video, we

recorded multiple situations such as occluding persons and

varying lighting conditions at the same physical space used

for VR modelling (Figure 7(c)). In the virtual environment

video, we recorded keeping the ambient light and room

setup as constant parameters and the following as

independent parameters: (I) changing number of

humanoids in frames (one to four humanoid), (II) posture of

humanoids (seating and standing), (IV) occluding

humanoids (yes or no). We also captured a live video with

the same setup for a duration of 5 minutes for pose

estimation. We randomly selected then 300 images 640 × 480

pixels resolution from this video to test the model for pose

classification.

Figure 7: Left column: (a) Original input images (1st column); (b) Random
samples from a single image at n=6 (2nd column), n=11 (3rd column), and

n=25 (4th column).

Synthetic Data: To ensure the digital twin was as photorealistic

as feasible for data generation, we employed Unity's Ray

tracing [72] tools, instead of the traditional Rasterized

renderer. Ray tracing is a rendering technique that involves

tracing individual rays of light as it bounces off virtual objects

in the scene. Specifically, we used Unity's path tracing

algorithm [71] with a sample count of 4096, i.e., the algorithm

traces 4096 rays of light and requires 4096 frames to generate

a single image. Hence, if the simulation runs at 30 frames per

second, it will take around 2.3 minutes to generate one

image. To automate the process and increase the dataset’s

Lab Report BT Internal 11

diversity, we utilized Unity's perception package. We were

able to generate high-fidelity ray traced synthetic datasets

of humanoids in a sitting or standing pose through the

perception package and its in-built randomizer. By exploiting

this randomizer, the humanoids pose, i.e., the position and

orientation, were changed according to a random seed with

each iteration. By randomizing their pose on a fixed z-axis, we

were also able to ensure that the humanoids did not clash

with one another. We placed humanoid figures in close

proximity in synthetic data.

5.1 Person Detection

We tested our trained model on both real and synthetic

sequences of images. We calculated the accuracy of our

model using the formula: Accuracy =

(TP+TN)/(TP+FP+FN+TN), where TP, TN, FP, and FN stand for

True Positive, True Negative, False Positive, and False

Negative, respectively.

Office space: We tested a total of 9000 images divided into

three classes – real, synthetic images generated without ray

tracing and synthetic images generated through ray tracing.

We considered synthetic images without ray tracing as ray

tracing is computationally intensive and in practical

implementation, we may need to deploy the digital twin

without ray tracing based on availability of GPUs. We found

an overall accuracy of 96.044% (std error 0.07) for real

images, 96.981% (std error 0.126) for synthetic images without

using raytracing and 94.25% (std error 0.09) with synthetic

images using ray tracing (Figure 8(b)). We analyzed

accuracies to determine if the performance of CNN is

significantly different between real and synthetic images. We

listed accuracies for all conditions (different number of

persons, posture, and occlusion) separately and found that

except when one person is occluded, the interquartile range

for all conditions to be zero and median, first and third

quartile is 100% for both real and synthetic images

Laboratory space: We tested total of 9600 images divided

into two classes – real and synthetic to compare

performance of the model. We found an overall accuracy of

91% (std error 0.11) for real images and 94% (std error 0.04) for

synthetic images (Figure 8(b)). We also observed overall

latency of 14.25 frames/second and 14.17 frames/second for

real images and synthetic images, respectively. We

measured accuracy for all 16 combinations (Postures (2) ×

Occlusion (2) × Number of Persons (4)) and found lowest

accuracy when one person was occluded in real image. In

all other conditions, we found accuracy was higher than 80%.

We undertook non-parametric statistical hypothesis testing to

compare accuracy and latency between real and synthetic

images. Using Wilcoxon Signed-Rank test, we did not find any

significant difference neither in accuracy nor in latency at

p<0.01.

• We observed few cases (for e.g., one person sitting with

occlusion) where accuracy on real images were

comparatively lower than synthetic images. It might be

due to uncontrolled lighting illumination, similar color

contrast between dresses of persons and background

and so on.

• The difference in accuracy among two conditions were

3%, which means in practical cases we will not miss a

person.

5.2 Pose Estimation

We tested the model performance on both synthetic and

real data as explained in section 3 and real data. We

obtained 17 key points of the human body as output from the

model. We calculated distance vectors from left hip to left

shoulder and to left knee. By using the dot product formula

between these two vectors, we obtained left hip's interior

angle. We set the threshold for hip's interior angle to be 160

degree and we concluded if the angle was more than the

threshold value for a posture, we labelled as 'standing', else

labelled as 'sitting'. We found accuracy of 83.82% and 84.73%

for real data and synthetic data respectively.

5.3 Social Distancing

We fixed a camera at a particular height of the room in real

world. We then collected distances between persons in

different position of the room and that is also with different

distances. To fix the distances between persons, we used

distance of 2ft, 4ft, 6ft, and 8ft and put markers on the floors.

We then asked our lab colleagues to stand on those markers

and captured images (Figure 9). We measured correlation of

actual Euclidian distance among people in real workspace

with the virtual distance measured from the VE, and the

correlation coefficient was found to be 𝑟 = 0.82, 𝑝 < 0.01, 𝑅2 =

0.67. Figure 10 shows the scatter plot explaining correlation

between real world and pixel wise distances. In this context,

we measured correlation of this measurement with the

distance measured through the virtual environment in office

space and the correlation coefficient was r=0.99, p<0.01.

Lab Report BT Internal 12

(a)

(b)

Figure 8: Comparing Accuracy of Person Detection on Real and Synthetic Data in both office and laboratory space.

(a)

(b)

(c)

(d)

Figure 9: Sample images for measuring social distances between two persons in different position of the room. (a) and (b) are showing persons are
standing in 4ft and (c) and (d) are showing persons standing in distance of 8ft.

(a)

(b)

Figure 10: Scatter Plot between Distances measured from Real World environment and using person detection model. (a) Office space; (b) Laboratory
space.

5.4 Discussion

We compared performance of a representative CNN model

among real and synthetically generated images using a VR

digital twin of office space and laboratory space.

Office space: We noted that the interquartile range of

accuracies across different combinations of number of

persons, occlusion and posture is zero with first, second and

third quartile is at 100%. The highest number of images with

less than 100% accuracy occurred when one or more persons

are occluded, and it was similar for both real and synthetic

images. We observed few cases (for e.g., two persons sitting

with occlusion) where accuracy on real images were

comparatively lower than synthetic images. It might be due

to uncontrolled lighting illumination, similar color contrast

between dresses of persons and background and so on. The

difference in accuracies among three conditions were less

than 2%, which will not have much effect for practical use

cases. The calculated distances from synthetic image

correlated with 0.99 coefficient with real distances.

We found three conditions (two persons sitting with occlusion,

three persons standing without occlusion, three persons

sitting with and without occlusion) where accuracy on real

images were comparatively less than on synthetic images

without ray tracing. We observed that, although model was

able to detect persons in those conditions in real world, false

positive rate was higher. It might happen due to uncontrolled

ambient lighting conditions in real world, indistinguishable

similarity between dress colors and background in the

images.

Laboratory Space: We did not observe reduction in accuracy

of the model with increasing the number of persons. The

lowest accuracy (83.34%) was found with the combination of

three persons in sitting postures and occluded. We also

observed that with four persons in all combinations, accuracy

was above 94%. A video demonstration of the complete

system can be found at https://youtu.be/4D2iGaDrP2c.

https://youtu.be/4D2iGaDrP2c

Lab Report BT Internal 13

6. Applications

In this section, we described two possible applications of the

system beyond remote monitoring of laboratory space. The

first case study extended the social distancing measure to

estimate maximum occupancy of a room maintaining social

distance. The second case study presents a validation of the

concept for developing digital twin of an Indian road.

6.1 Maximum Occupancy of a Room

In the previous section, we reported that we were able to

measure social distancing by computing the inter-person

distances in the virtual world and our analysis showed a high

correlation with the ground truth obtained from the real data.

We extend the work to estimate the maximum number of

occupants in a closed space maintaining social distancing.

To determine the maximum occupancy, we approached

the problem through a circle packing technique [77], which

can be defined as the arrangement of circles inside a given

boundary such that no two circles overlap, and some (or all)

of them are mutually tangential. In our case, individuals were

represented as the center of a circle of radius 3ft. If two

individuals were to maintain a distance of more than 6ft from

each other, then the distance between their circle centers

would be greater than or equal to twice their radius.

It should be noted that while the circle packing technique

requires the circles to be within the bounds of the space, in

our case only their centers are required to do so. For instance,

people could be stationed at the corner of a room or leaning

against a wall in a meeting room, in which case their circle

bounds will overlap with the room boundary. However, their

centers would be within the bounds of the room. We termed

the region where the people can be stationed as the feasible

region. The feasible region excludes the obstacles in a space,

forming an irregular concave polygon. Hence, defining the

feasible region is crucial for the proposed algorithm. To define

the feasible region in the twin, we employed Unity's NavMesh

feature. A Navigation mesh in Unity is an abstract data

structure used to aid Non-Playable Characters (NPCs) or

Artificial Intelligence agents in pathfinding through

complicated spaces [69, 78]. Constructing a Navigation

mesh involves first defining the surfaces where NPCs would be

able to walk. We did this by assigning the furniture, pillars, and

other obstacles in the room as NavMesh obstacles. Unity

generates a custom polygon that curves around the

obstacles defined earlier after mesh building, resulting in the

feasible region, as depicted in Figure 11(a). The distance

maintained by the NavMesh from the obstacles can be

controlled by adjusting the Humanoid settings of the

NavMesh, specifically by increasing or reducing the

humanoid's radius. A larger radius leads to a more spaced

distance from the obstacles and vice versa.

Packing Process: We adopted and modified the layout

strategy from Yuan et al. [83], since we found it to be

adequate considering our specific use-case of packing

circles in irregular shapes. Yuan’s algorithm implemented a

left bottom placement strategy, namely placing circles in the

left-most and bottom-most position first and growing from

there.

Our algorithm was integrated into the Unity game engine

and exploited its physics simulation capabilities. We utilized a

ray casting approach to counter the problem of assessing

whether a circle’s center is within the feasible region. In

computer graphics, ray casting involves shooting an

imaginary straight ray from a point to ascertain which objects

it collides with along its path. The circle's center was

designated as the point of origin for our ray, the direction

being downwards, and its parameters were set such that it

travelled one meter. We then checked to see if the ray

collided with the feasible region; if it did, the circle was

deemed valid. To ensure the circles did not overlap, we

assigned a collision detection protocol. The protocol states

that if a circle collides with any other already packed circle

upon instantiation, it is not deemed valid. We employed an

imaginary sphere collider around every circle. If another

circle were to overlap, then their sphere colliders would throw

a trigger event, stating that a collision has occurred. Thereby

every circle undergoes a two-step check before they are

deemed valid to be packed. Furthermore, due to the

polygon's irregular nature, we employed 128 discrete points

for our layout circle [83].

Jump-Off Circles: Due to the irregular structure of the feasible

region, the algorithm may face a dead-end, i.e., it reaches a

point where it has no way of moving forward, while a large

portion of the feasible region remains unpacked. We

implemented 'jump-off circles', which are randomized circles

where the algorithm can jump to and resume packing when

it faces a dead-end. While packing, the algorithm is designed

to choose the first out of sixteen circles (in the

counterclockwise direction) that meets the previous two

criteria. After finding this circle, it also examines the remaining

circles as to whether they satisfy the two criteria. If they do,

the algorithm designates those circles as 'jump-off points' and

stores them in a list data structure. The central circle from

which they originated is designated as the 'jump-off circle'.

The 'jump-off circle' and the list of 'jump-off points' are stored

as key-value pairs in an ordered dictionary. If later, these

'jump-off points' are found to be overlapping with other

packed circles, they are deemed invalid and removed from

the dictionary.

Consequently, when the algorithm reaches a dead-end, it

jumps to a jump-off circle, picks the earliest jump-off point in

the clockwise direction, and resumes packing. If no jump-off

Lab Report BT Internal 14

circles exist, the algorithm assumes no space is left to pack

and ceases the packing process. Figure 11(b) shows the result

of the packing process after implementing jump-off points,

and the pseudocode for the algorithm is outlined below.

ALGORITHM 1: Estimating Maximum Space Occupancy

Input: left-most position on the feasible region to start the packing
process from

Output: packing structure

function PACKINGPROCESS (position)

 create a packed circle with centre position

 create a layout circle with centre position

 for every discrete point on the layout circle with position i,
do

 create a circle with centre i

 if circle is inside the feasible region then

 if circle does not overlap other packed
circles then

 position = circle’s centre

 flag = 0

 if circle has jump-off points
then

 store jump-off points
in a dictionary, and designate circle as jump-off circle

 else

 flag = 1

 if flag = 0 then

 return PACKINGPROCESS (position)

 else if flag = 1 and jump-off circles exist then

 position = jump-off point

 else if flag = 1 and no jump-off circles exist then

 return

end

Figure 11: (a) The feasible region (in blue) extracted from Unity's

NavMesh, and which conveniently ignores the obstacles in the room. (b)

The result of the packing process on the feasible region. The algorithm

was able to pack 21 circles.

Figure 12: A parallel coordinate plot depicting the comparison of our

algorithm’s packing w.r.t. different discrete points.

Validation: Since our algorithm allows circles to cross the

packing polygon’s boundary, the traditional packing

efficiency calculation of dividing the total area of the

polygon by the total area of the packed circles could not be

used. Hence, we compute the pixel count in a top view

image of the feasible region before packing (marked in blue

in figure 11) and compared it with the pixel count of packed

circles after packing. In Figure 11(b), where the circle radius

was 3 ft, the blue pixels covered, or the packing efficiency

was found to be 89.2%. Due to our unique circumstance, we

do not have a ground truth metric to compare this packing

efficiency. However, there exists optimal packing structures

for packing n circles in a unit square, where n ranges from

one to twenty [77]. We compare this optimal packing to our

algorithms' performance of packing n circles ranging from

one to ten and reported the absolute differences in Table 1.

The absolute differences between our algorithm and the

optimal packing were found to be at most two circles. We

further analysed our algorithms' ability to pack circles by

increasing the number of discrete points and reported results

in Figure 12. It was found that upon increasing the discrete

points, our algorithm was able to more closely resemble the

optimal packing (256 discrete points was able to pack 9

circles for the optimal packing of 10), at the expense of more

computation power. It should be noted that this algorithm

serves only to estimate the maximum occupancy limit of a

space, similar to the occupancy limits of an elevator, and

does not serve as a definite tool to support public health

decisions.

Table 1: Comparison of our algorithm’s packing to the proved optimal

packing of n circles in a unit square

Diameter of

Circle

Optimal

Packing

Our Algorithm Packed

(16 Discrete Points)

Absolute

Difference

1.000 1 1 0

0.586 2 2 0

0.509 3 2 1

0.500 4 4 0

0.414 5 4 1

0.375 6 4 2

0.349 7 6 1

0.341 8 6 2

0.333 9 8 1

0.296 10 8 2

Lab Report BT Internal 15

6.2 Digital Twin of an Indian Road

The concept of using digital twin to generate customized

synthetic data can also be explored for developing (semi)-

autonomous vehicles. Presently, there are limited data

available for developing computer vision models for

detecting non-conventional traffic participants. It is also

difficult to generate real dataset for certain types of road

objects like children or animals. We developed a digital twin

of an Indian road. Our approach was similar to the Parallel

Eye Dataset [40] but was richer in terms of developing VR

models of non-conventional traffic participants like animals,

three wheelers and so on. We compared performance of

YOLOv3 for detecting unusual traffic participants for both real

and synthetic datasets. We modelled an Indian road in Unity,

comprising of diverse types of vehicles and stray animals. We

employed the terrain package to create an artificial

environment, and we placed several three-dimensional

models of animals and Indian vehicles arbitrarily to reflect a

real-world scenario. The synthetic dataset was generated

from the perspective of a person in a driver's seat of a car.

We compared performance of YOLOv3 on both real

(obtained from an Indian road dataset [88]) and synthetic

images. We found that the pattern in average detection rate

for different classes (for instance, the detection rate for car is

the highest for both datasets) are similar across real and

synthetic data (Figure 13).

Figure 13: Performance comparison of YOLOv3 in both virtual and real

environment in the context of an Indian road scenario.

7. Explanation through visualization

In the previous section, we reported that YOLO had its lowest

accuracy where one or more persons were partially

occluded. To understand this result, we used an intermediate

layer visualization technique and the Grad-CAM technique

to explain the person detection model's performance. Grad-

CAM calculates each pixel value of the feature maps in the

last convolution layer on the predicted class [107]. It does not

need any information related to bounding box regression,

which is typically used to localize an object in the image. As

the YOLO model does not allow reading data from

intermittent layers, we used a VGG16 classification model

pretrained with the ILSVRC ImageNet dataset. We prepared

our dataset combining five different classes (i.e., airplane,

bicycle, car, motorbike, and face) of images downloaded

from Kaggle, Google Image, the Caltech face image

dataset, and the Georgia Tech Face database. We trained

the model with a total of 3513 images parted in training and

validation datasets (80:20) for 100 epochs. To understand

how the CNN model can classify the input image, we need

to understand how our model sees the input image by

looking at the output of its intermediate layers. We visualized

activations in the (n/4)-th convolutional layer, (n/2)-th

convolutional layer, (3n/4)-th convolutional layer, and the n-

th convolutional layer of the trained model. To visualize the

heatmap generated by the Grad-CAM method, we used a

pretrained VGG16 model. Although this pretrained model

does not include any person class, it has different classes

related to dresses (e.g., ‘t-shirt’, ‘jeans’), which are relevant

for the localization of the individual in the image. We

generated a heatmap corresponding to the ‘t-shirt’ and

‘jeans’ classes to identify people in the images. We visualized

the performance of the CNN on person prediction in both

real and synthetic generated images. We generated the

output of CNN from the layers mentioned above for both

types of images to understand whether CNN handles

synthetic generated and real images differently or in the

same manner. We found that the first few convolution layers

of the model extracted basic features (edges, contours) of

the object and retained maximum information from the input

image (Figure 14(b), 15(b)). As we found deeper in the

model, activations became less visually interpretable (Figure

14(c) – 14(e), 15(c) – 15(e)). The model started to extract

abstract features (e.g., patch-based features like the texture

of body parts of a humanoid in Figure 14 or a person in Figure

15). In the deeper level of the network resolution, the feature

map starts decreasing, but spatial information increases. If

we observe all four-feature map outputs (Figure 14(c) – 14(e)

and 15(c) – 15(e)), it is evident that in each transformation

model it eliminated the background or any irrelevant

information and refined useful information related to class of

objects.

We also visualized heatmaps of class activation to

understand which part of the object was responsible for

letting the model classify correctly. In this context, the class

activation map tells us which part of an image corresponds

to a class of objects. In Figure 16, we showed a heatmap on

real-world images synthetically generated images (Figure

16(a) – (c)). We found that different body areas were strongly

activated, where brown color corresponded to the highest

gradient score, and cyan color corresponded to the lowest

gradient score. Heatmap based visualization helped us

identifying which part of the image contributes to the case

of false positive or false negative results.

Lab Report BT Internal 16

Figure 14 (a) Input image (humanoids in a synthetic generated image). A

red box indicates that YOLO detected a person; (b) 28th channel of the

activation of 3rd convolution layer; (c) 28th channel of the activation of 7th

convolution layer; (d) 28th channel of the activation of the 10th convolution

layer; (e) 510th channel of the activation of the 13th convolution layer.

(Please note that this figure is best viewed in electronic form).

Figure 15 (a) Input test image (person in real-world image); (b) 28th channel

of the activation of 3rd convolution layer; (c) 28th channel of the activation

of 7th convolution layer; (d) 28th channel of the activation of the 10th

convolution layer; (e) 510th channel of the activation of the 13th convolution

layer. (Please note that this figure is best viewed in electronic form).

Figure 16 Grad-CAM based heatmap for three different situations where

YOLOv3’s performance was different in terms of accuracy (shown in red

bounding boxes). (a) YOLOv3 failed to detect a partially occluded person;

(b) YOLO detected all individuals; (c) YOLOv3 detected all individuals with

different postures and dressing different colors.

To understand how different independent variables

contributed to CNN’s performance, we tested on synthetic

images with different parameters. We started with an

occluded person’s image where the YOLOv3 failed to detect

individuals, and the accuracy dropped to 50% (Figure 17(a)).

We found that occlusion made it difficult for the model to get

enough information from the partially occluded person to

localize it, although it could generate a heatmap for whole

body areas of a standing person as it was fully visible (Figure

17(a)). We did a second check with a different image in

which YOLOv3 was able to detect all the people (Figure

17(b)). When we looked closely at the heatmap areas, we

found strong associativity between the bounding box region

and the heatmap areas. Although the female humanoid in

this image was weakly classified, the heatmap covered the

maximum upper body parts visible in the image for all three

individuals. As previously mentioned, the brown color

corresponded to the highest gradient score, and the cyan

color corresponded to the lowest gradient score. We tested

the heatmap with a third image where the humanoid figures

were wearing different colors (green and white) and were

positioned in different postures (i.e., one person was sitting,

and a second person was standing). The Grad-CAM

heatmap gave a strong visual cue about the location of

these two different individuals (Figure 16(c)). These results

confirm our idea of using this visualization technique to

analyze failure modes of a CNN model and take corrective

steps, such as increasing the camera field of view and

location to record a full-frontal view of the humanoids, in this

case, to increase the accuracy of the model.

8. General discussion

This section summarizes our work and identifies its novelty and

utilities.

8.1 Summary

This work proposes a new way of validating the accuracy of

CNNs through synthetic customized video generated in an

immersive environment. A case study demonstrates this

implementation’s possible application towards the

development of an automated social distance

measurement system in a physical office and laboratory

space. We have presented training and testing accuracy of

detecting individuals using CNN based person detection

model and used data visualization techniques to explain the

working of the model for both real-world and synthetically

generated video.

8.2 Accuracy of Person Detection

We noted that we achieved 100% median accuracy for

person detection and 0.99 correlation on physical distance

measurement. CNN is a rapidly evolving field with new

models are frequently appearing in literature and the

accuracy of person detection even with occlusion can

further be increased using customized CNN models.

However, it may be noted that this paper is not focused on

developing CNN for person detection, rather proposing a

new way of validating CNN model using VR based synthetic

dataset. If a different CNN model is used other than YOLOv3,

we can also train it with synthetic dataset and can achieve

similar accuracy in real life deployment. The present social

distance measurement algorithm works within the visual field

of a webcam inside a room, but future version will implement

Lab Report BT Internal 17

3D distance measurement like Bertoni’s [40] Monocular 3D

Localization algorithm.

8.3 Utility

The proposed VR prototype will be deployed as a VR based

digital twin of an office space implementing real-time person

detection and environmental variable monitoring

capabilities through interactive dashboards. In addition, the

VR interface would show real time Covid-19 statistics at the

place of deployment and measure the number of people in

the space, and their relative position and posture. This can be

very valuable to monitor social distancing measures in office

spaces. A second benefit could be that an observer can

undertake a detailed remote virtual walk through the office

space, which would not be possible with a standard multi-

screen video from security cameras.

The concept of validating a CNN through synthetic video

can have utilities beyond these particular use cases of

measuring social distancing at an office space or laboratory

space. For example, for both unmanned ground and aerial

vehicles, synthetic videos can be used to validate machine

vision systems where real-time video generation is difficult, for

example, inside a hazardous place such as a nuclear power

station or a high-security zone such as inside of a military

facility.

8.4 Value Addition

• During the past few months, a plethora of computer

vision projects on calculating social distancing was

produced. However, most of these systems were not as

rigorously validated as traditional machine vision

systems for autonomous vehicles or face recognition

due to a lack of appropriate data. Bertoni’s [40]

algorithm was validated for outdoor environment but

not for indoor office workspace. Our paper proposes a

new way of validating a machine learning-based

person detection system using synthetically generated

video in an immersive environment.

• Digital twins are traditionally used to optimize or simulate

the process life cycle or maintenance of assets. Our

work proposes a new use of digital twins for enhancing

workplace safety by measuring social distance.

• We also showed one application of the visualization

technique in synthetic images to understand why CNN-

based object detection models worked or failed to

detect individuals from the images. We compared the

performance of YOLO using different independent

parameters to understand how it works in different

situations. The heatmap based visualization helped us to

get a visual explanation about the working of the CNN

model. This approach is novel in that a similar approach

can be used for other CNN models for different

applications, and it is a step further towards the

collective goal of explainable AI (XAI).

9. Conclusion

This work presented a VR based digital twin implementation

of a physical office and laboratory space towards the goal

of using it as an automatic social distancing measurement

system. The VR environment was enhanced with an

interactive dashboard showing information collected from

physical sensors and the latest statistics on Covid-19. We

presented a person-detection method and a pose-

estimation model to determine the number of people in a

room, their respective poses and mapped them in a virtual

environment for measuring social distance. Our proposed

pipeline along with the Digital Twin of the shared space

visualizes both environmental and human behavior aspects

preserving privacy of individuals and improves latency of

such monitoring systems as it does not require to stream live

video. We intend to extend our human pose dataset with

wide range of poses with multi-person occluded setting. We

also presented a circle-packing algorithm which can be

implemented using Unity to obtain the optimal number of

people that can be accommodated in any given space

maintaining social distance and proposed to use VR

generated synthetic data for training and testing computer

vision models. We also used two different data visualization

techniques to explain how a complex CNN works, therefore

looking towards the advancement of explainable AI, and we

used it to improve the performance of the CNN. Our hope is

that the proposed solution will help measure occupancy

accurately and contribute to enhancing the safety of

workspaces by enforcing social distancing measures.

References

[1] Unity Perception Package. Unity Technologies. Retrieved May 27, 2020 from

https://github.com/Unity-Technologies/com.unity.perception

[2] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. 2015. Importance

weighted autoencoders. arXiv preprint arXiv:1509.00519, 2015

[3] Considerations relating to social distancing measures in response to COVID-19

- second update. C. Adlhoch. Retrieved March 10, 2021 from

https://www.ecdc.europa.eu/en/publications-data/considerations-relating-

social-distancing-measures-response-covid-19-second

[4] Yuanhao Cai, Zhicheng Wang, Zhengxiong Luo, Binyi Yin, Angang Du, Haoqian

Wang, Xiangyu Zhang, Xinyu Zhou, Erjin Zhou, and Jian Sun. 2020. Learning

delicate local representations for multi-person pose estimation. In European

Conference on Computer Vision, pages 455–472. Springer, 2020

[5] Jiale Cao, Yanwei Pang, and Xuelong Li. 2017. Learning multilayer channel

features for pedestrian detection. IEEE transactions on image processing,

26(7):3210–3220, 2017

[6] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime multi-

person 2d pose estimation using part affinity fields. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 7291–7299, 2017

[7] Ricky TQ Chen, Xuechen Li, Roger Grosse, and David Duvenaud. Isolating

sources of disentanglement in variational autoencoders. arXiv preprint

arXiv:1802.04942, 2018

[8] Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi, Thomas S Huang, and

Lei Zhang. Higherhrnet: Scale-aware representation learning for bottom-up

human pose estimation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. pages 5386–5395. 2020

[9] Components 101. NodeMCU ESP8266. Retrieved May 10, 2021 from

https://components101.com/development-boards/nodemcu-esp8266-pinout-

features-and-datasheet

https://github.com/Unity-Technologies/com.unity.perception
https://www.ecdc.europa.eu/en/publications-data/considerations-relating-social-distancing-measures-response-covid-19-second
https://www.ecdc.europa.eu/en/publications-data/considerations-relating-social-distancing-measures-response-covid-19-second
https://components101.com/development-boards/nodemcu-esp8266-pinout-features-and-datasheet
https://components101.com/development-boards/nodemcu-esp8266-pinout-features-and-datasheet

Lab Report BT Internal 18

[10] Navneet Dalal and Bill Triggs. 2005. Histograms of oriented gradients for human

detection. In 2005 IEEE computer society conference on computer vision and

pattern recognition (CVPR’05). volume 1. pages 886–893. Ieee

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009.

Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference

on computer vision and pattern recognition. pages 248–255. Ieee

[12] Emily Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. 2015. Deep

generative image models using a Laplacian pyramid of adversarial networks.

arXiv preprint arXiv:1506.05751

[13] Tingxiang Fan, Zhiming Chen, Xuan Zhao, Jing Liang, Cong Shen, Dinesh

Manocha, Jia Pan, and Wei Zhang. 2020. Autonomous social distancing in urban

environments using a quadruped robot. arXiv preprint arXiv:2008.08889

[14] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.

2009. Object detection with discriminatively trained part-based models. IEEE

transactions on pattern analysis and machine intelligence. 32(9):1627–1645

[15] Neil M Ferguson, Derek AT Cummings, Simon Cauchemez, Christophe Fraser,

Steven Riley, Aronrag Meeyai, Sopon Iamsirithaworn, and Donald S Burke.

2005. Strategies for containing an emerging influenza pandemic in southeast

asia. Nature, 437(7056):209–214

[16] Neil M Ferguson, Derek AT Cummings, Christophe Fraser, James C Cajka,

Philip C Cooley, and Donald S Burke. 2006. Strategies for mitigating an influenza

pandemic. Nature, 442(7101):448–452

[17] Stepehen Farguson. Apollo 13: The First Digital Twin. Retrieved May 10, 2021

from https://blogs.sw.siemens.com/simcenter/apollo-13-the-first-digital-twin/

[18] Mihai Fieraru, Anna Khoreva, Leonid Pishchulin, and Bernt Schiele. 2018.

Learning to refine human pose estimation. In Proceedings of the IEEE

conference on computer vision and pattern recognition workshops. pages 205–

214

[19] Christophe Fraser, Steven Riley, Roy M Anderson, and Neil M Ferguson. 2004.

Factors that make an infectious disease outbreak controllable. Proceedings of

the National Academy of Sciences. 101(16):6146–6151

[20] Ross Girshick, Pedro Felzenszwalb, and David McAllester. 2011. Object

detection with grammar models. Advances in Neural Information Processing

Systems. 24:442–450

[21] Edward Glaessgen and David Stargel. 2012. The digital twin paradigm for future

nasa and us air force vehicles. In 53rd AIAA/ASME/ASCE/AHS/ASC structures,

structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive

structures conference 14th AIAA. page 1818

[22] Stefan Hinterstoisser, Olivier Pauly, Hauke Heibel, Marek Martina, and Martin

Bokeloh. 2019. An annotation saved is an annotation earned: Using fully

synthetic training for object detection. In Proceedings of the IEEE/CVF

International Conference on Computer Vision Workshops. pages 0–0

[23] Jan Hosang, Mohamed Omran, Rodrigo Benenson, and Bernt Schiele. 2015.

Taking a deeper look at pedestrians. In Proceedings of the IEEE conference on

computer vision and pattern recognition. pages 4073–4082

[24] HTC vive pro eye overview. Retrieved May 10, 2021 from

https://www.vive.com/sea/product/vive-pro-eye/overview/

[25] Qichang Hu, Peng Wang, Chunhua Shen, Anton van den Hengel, and Fatih

Porikli. 2017. Pushing the limits of deep cnns for pedestrian detection. IEEE

Transactions on Circuits and Systems for Video Technology. 28(6):1358–1368

[26] Junjie Huang, Zheng Zhu, Feng Guo, and Guan Huang. 2020. The devil is in the

details: Delving into unbiased data processing for human pose estimation. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. pages 5700–5709

[27] Shaoli Huang, Mingming Gong, and Dacheng Tao. 2017. A coarsefine network

for keypoint localization. In Proceedings of the IEEE International Conference on

Computer Vision. pages 3028–3037

[28] Xun Huang, Yixuan Li, Omid Poursaeed, John Hopcroft, and Serge Belongie.

2017. Stacked generative adversarial networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition. pages 5077–5086

[29] Eldar Insafutdinov, Mykhaylo Andriluka, Leonid Pishchulin, Siyu Tang, Evgeny

Levinkov, Bjoern Andres, and Bernt Schiele. 2017. Arttrack: Articulated multi-

person tracking in the wild. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 6457–6465

[30] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo Andriluka, and

Bernt Schiele. 2016. Deepercut: A deeper, stronger, and faster multi-person

pose estimation model. In European Conference on Computer Vision. pages 34–

50. Springer

[31] Umar Iqbal and Juergen Gall. 2016. Multi-person pose estimation with local joint-

to-person associations. In European Conference on Computer Vision. pages

627–642. Springer

[32] Sheng Jin, Wentao Liu, Enze Xie, Wenhai Wang, Chen Qian, Wanli Ouyang,

and Ping Luo. 2020. Differentiable hierarchical graph grouping for multi-person

pose estimation. In European Conference on Computer Vision. pages 718–734.

Springer

[33] Jonathan Leban, Amanda Trang, Sarah Wolf, Jacob Platin, Anthony Navarro,

Sujoy Ganguly and Sarah Gibson. Teaching robots to see with unity. Retrieved

May 10, 2021 from https:/ / blogs.unity3d.com/2021/03/02/teaching-robots-to-

see-with-unity/

[34] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progressive

growing of gans for improved quality, stability, and variation. arXiv preprint

arXiv:1710.10196

[35] Siavash H Khajavi, Naser Hossein Motlagh, Alireza Jaribion, Liss C Werner, and

Jan Holmström. 2019. Digital twin: vision, benefits, boundaries, and creation for

buildings. IEEE Access. 7:147406–147419

[36] Ines Khelifi. Azure digital twins: Powering the next generation of iot connected

solutions. Retrieved May 10, 2021 from https://azure.microsoft.com/en-

in/blog/azure-digital-twins-powering-the-next-generation-of-iot-connected-

solutions/

[37] Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi. 2019. Pifpaf: Composite

fields for human pose estimation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. pages 11977–11986

[38] Helen Leblanc. What are PBR Materials. Retrieved May 10, 2021 from

https://info.e-onsoftware.com/learning_vue/what-are-pbr-materials

[39] Wenbo Li, Zhicheng Wang, Binyi Yin, Qixiang Peng, Yuming Du, Tianzi Xiao,

Gang Yu, Hongtao Lu, Yichen Wei, and Jian Sun. 2019. Rethinking on multi-

stage networks for human pose estimation. arXiv preprint arXiv:1901.00148

[40] Xuan Li, KunfengWang, Yonglin Tian, Lan Yan, Fang Deng, and Fei-Yue Wang.

2018. The paralleleye dataset: A large collection of virtual images for traffic vision

research. IEEE Transactions on Intelligent Transportation Systems 20(6):2072–

2084

[41] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common

objects in context. In European conference on computer vision. pages 740–755.

Springer

[42] Pablo Martinez-Gonzalez, Sergiu Oprea, Alberto Garcia-Garcia, Alvaro Jover-

Alvarez, Sergio Orts-Escolano, and Jose Garcia-Rodriguez. 2019. Unrealrox: an

extremely photorealistic virtual reality environment for robotics simulations and

synthetic data generation. Virtual Reality. pages 1–18

[43] Microsoft. Welcome to airsim. Retrieved May 10, 2021 from

https://microsoft.github.io/AirSim/

[44] Microsoft Corporation. Iconics makes smart buildings even smarter with azure

digital twins Retrieved May 10, 2021 from https://customers.microsoft.com/en-

us/story/iconics-partner-professional-services-azure-iot

[45] Microsoft Corporation. Steelcase demonstrates the smart and connected

workplace with new iot-powered solutions. Retrieved May 10, 2021 from

https://customers.microsoft.com/en-US/story/steelcase-manufacturing-azureiot-

en

[46] Anuj Mohan, Constantine Papageorgiou, and Tomaso Poggio. 2001. Example-

based object detection in images by components. IEEE transactions on pattern

analysis and machine intelligence. 23(4):349–361

[47] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee. 2019. Posefix: Model-

agnostic general human pose refinement network. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. pages

7773–7781

[48] Abhishek Mukhopadhyay, Imon Mukherjee, and Pradipta Biswas. 2019.

Comparing cnns for non-conventional traffic participants. In Proceedings of the

11th International Conference on Automotive User Interfaces and Interactive

Vehicular Applications: Adjunct Proceedings pages 171–175

[49] Alejandro Newell, Zhiao Huang, and Jia Deng. 2016. Associative embedding:

End-to-end learning for joint detection and grouping. arXiv preprint

arXiv:1611.05424

[50] Xuecheng Nie, Jiashi Feng, Jianfeng Zhang, and Shuicheng Yan. 2019. Single-

stage multi-person pose machines. In Proceedings of the IEEE/CVF

International Conference on Computer Vision. pages 6951–6960

[51] Nikolaos Nikolakis, Kosmas Alexopoulos, Evangelos Xanthakis, and George

Chryssolouris. 2019. The digital twin implementation for linking the virtual

representation of humanbased production tasks to their physical counterpart in

the factory-floor. International Journal of Computer Integrated Manufacturing.

32(1):1–12

[52] John Paisley, David Blei, and Michael Jordan. 2012. Variational bayesian

inference with stochastic search. arXiv preprint arXiv:1206.6430

[53] Dim P Papadopoulos, Jasper RR Uijlings, Frank Keller, and Vittorio Ferrari.

2016. We don’t need no bounding-boxes: Training object class detectors using

only human verification. In Proceedings of the IEEE conference on computer

vision and pattern recognition. pages 854–863

[54] Constantine Papageorgiou and Tomaso Poggio. 2000. A trainable system for

object detection. International journal of computer vision. 38(1):15–33

[55] George Papandreou, Tyler Zhu, Nori Kanazawa, Alexander Toshev, Jonathan

Tompson, Chris Bregler, and Kevin Murphy. 2017. Towards accurate multi-

person pose estimation in the wild. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. pages 4903–4911

[56] Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres, Mykhaylo

Andriluka, Peter V Gehler, and Bernt Schiele. 2016. Deepcut: Joint subset

https://blogs.sw.siemens.com/simcenter/apollo-13-the-first-digital-twin/
https://www.vive.com/sea/product/vive-pro-eye/overview/
https://azure.microsoft.com/en-in/blog/azure-digital-twins-powering-the-next-generation-of-iot-connected-solutions/
https://azure.microsoft.com/en-in/blog/azure-digital-twins-powering-the-next-generation-of-iot-connected-solutions/
https://azure.microsoft.com/en-in/blog/azure-digital-twins-powering-the-next-generation-of-iot-connected-solutions/
https://info.e-onsoftware.com/learning_vue/what-are-pbr-materials
https://microsoft.github.io/AirSim/
https://customers.microsoft.com/en-us/story/iconics-partner-professional-services-azure-iot
https://customers.microsoft.com/en-us/story/iconics-partner-professional-services-azure-iot
https://customers.microsoft.com/en-US/story/steelcase-manufacturing-azureiot-en
https://customers.microsoft.com/en-US/story/steelcase-manufacturing-azureiot-en

Lab Report BT Internal 19

partition and labeling for multi person pose estimation. In Proceedings of the

IEEE conference on computer vision and pattern recognition. pages 4929–4937

[57] Narinder Singh Punn, Sanjay Kumar Sonbhadra, and Sonali Agarwal. 2020.

Monitoring covid-19 social distancing with person detection and tracking via fine-

tuned yolo v3 and deepsort techniques. arXiv preprint arXiv:2005.01385

[58] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You

only look once: Unified, real-time object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition. pages 779–788

[59] Mohammad Amin Sadeghi and David Forsyth. 2014. 30hz object detection with

dpm v5. In European Conference on Computer Vision. pages 65–79. Springer

[60] Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. 2020.

Textcaps: a dataset for image captioning with reading comprehension. In

European Conference on Computer Vision. pages 742–758. Springer

[61] Srinivas Annambhotla, Cesar Romero and Alex Thaman. Synthetic data:

Simulating myriad possibilities to train robust machine learning models.

Retrieved May 10, 2021 from https://blogs.unity3d.com/2020/05/01/synthetic-

data-simulating-myriad-possibilities-to-train-robust-machine-learning-models/

[62] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. 2019. Deep high-resolution

representation learning for human pose estimation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. pages

5693– 5703

[63] Fei Tao, He Zhang, Ang Liu, and Andrew YC Nee. 2018. Digital twin in industry:

State-of-the-art. IEEE Transactions on Industrial Informatics. 15(4):2405–2415

[64] Yonglong Tian, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Pedestrian

detection aided by deep learning semantic tasks. In Proceedings of the IEEE

conference on computer vision and pattern recognition. pages 5079–5087

[65] Zhi Tian, Hao Chen, and Chunhua Shen. 2019. Directpose: Direct end-to-end

multi-person pose estimation. arXiv preprint arXiv:1911.07451

[66] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and

Pieter Abbeel. 2017. Domain randomization for transferring deep neural

networks from simulation to the real world. In 2017 IEEE/RSJ international

conference on intelligent robots and systems (IROS). pages 23–30. IEEE

[67] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun

Jampani, Cem Anil, Thang To, Eric Cameracci, Shaad Boochoon, and Stan

Birchfield. 2018. Training deep networks with synthetic data: Bridging the reality

gap by domain randomization. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops. pages 969–977

[68] Unity Technologies. For all the creators. Retrieved May 10, 2021 from

https://unity.com/

[69] Unity Technologies. Navmesh. Retrieved May 10, 2021 from

https://docs.unity3d.com/ScriptReference/AI.NavMesh.html

[70] Unity Technologies. Probuilder. Retrieved May 10, 2021 from

https://unity3d.com/unity/features/worldbuilding/probuilder

[71] Unity Technologies. Unity path tracing. Retrieved May 10, 2021 from

https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-

definition@7.1/manual/Ray-Tracing-Path-Tracing.html

[72] Unity Technologies. Unity real-time ray tracing. Retrieved May 10, 2021 from

https://unity.com/ray-tracing

[73] Paul Viola, Michael J Jones, and Daniel Snow. 2005. Detecting pedestrians

using patterns of motion and appearance. International Journal of Computer

Vision. 63(2):153–161

[74] Jian Wang, Xiang Long, Yuan Gao, Errui Ding, and Shilei Wen. 2020. Graph-

pcnn: Two stage human pose estimation with graph pose refinement. In

European Conference on Computer Vision. pages 492–508. Springer

[75] Xiaoyu Wang, Tony X Han, and Shuicheng Yan. 2009. An hoglbp human

detector with partial occlusion handling. In 2009 IEEE 12th international

conference on computer vision. pages 32–39. IEEE

[76] Xinlong Wang, Tete Xiao, Yuning Jiang, Shuai Shao, Jian Sun, and Chunhua

Shen. 2018. Repulsion loss: Detecting pedestrians in a crowd. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. pages

7774–7783

[77] Eric W Weisstein. Circle packing. Retrieved May 10, 2021 from

https://mathworld.wolfram.com/

[78] Wikipedia. Navigation mesh. Retrieved May 10, 2021 from

https://en.wikipedia.org/wiki/Navigation_mesh

[79] Bo Wu and Ramakant Nevatia. 2005. Detection of multiple, partially occluded

humans in a single image by bayesian combination of edgelet part detectors. In

Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1.

pages 90–97. IEEE

[80] Bin Xiao, Haiping Wu, and Yichen Wei. 2018. Simple baselines for human pose

estimation and tracking. In Proceedings of the European conference on

computer vision (ECCV). pages 466–481

[81] Dan Xu, Wanli Ouyang, Elisa Ricci, Xiaogang Wang, and Nicu Sebe. 2017.

Learning cross-modal deep representations for robust pedestrian detection. In

Proceedings of the IEEE conference on computer vision and pattern recognition.

pages 5363–5371

[82] You-Cyuan Jhang, Adam Palmar, Bowen Li, Saurav Dhakad, Sanjay Kumar

Vishwakarma, Jonathan Hogins, Adam Crespi, Chris Kerr, Sharmila

Chockalingam, Cesar Romero, Alex Thaman and Sujoy Ganguly. Training a

performant object detection ml model on synthetic data using unity perception

tools. Retrieved May 10, 2021 from

https://blogs.unity3d.com/2020/09/17/training-a-performant-object-detection-ml-

model-on-synthetic-data-using-unity-computer-vision-tools/

[83] Z Yuan, Y Zhang, MV Dragoi, and XT Bai. 2018. Packing circle items in an

arbitrary marble slab. In IOP Conference Series: Materials Science and

Engineering. volume 399. page 012059. IOP Publishing

[84] Feng Zhang, Xiatian Zhu, Hanbin Dai, Mao Ye, and Ce Zhu. 2020. Distribution-

aware coordinate representation for human pose estimation. Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition. pages 7093–

710.

[85] Liliang Zhang, Liang Lin, Xiaodan Liang, and Kaiming He. 2016. Is faster r-cnn

doing well for pedestrian detection? In European conference on computer vision.

pages 443–457. Springer

[86] Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng, and Shai Avidan. 2006. Fast

human detection using a cascade of histograms of oriented gradients. In 2006

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’06). volume 2, pages 1491–1498. IEEE

[87] Lorenzo Bertoni, Sven Kreiss and Alexandre Alahi. 2021. Perceiving Humans:

From Monocular 3D Localization to Social Distancing. IEEE Transactions on

Intelligent Transportation Systems. DOI: 10.1109/TITS.2021.3069376

[88] Girish Varma, Anbumani Subramanian, Anoop Namboodiri, Manmohan

Chandraker, and C. V. Jawahar 2019. IDD: A dataset for exploring problems of

autonomous navigation in unconstrained environments. In 2019 IEEE Winter

Conference on Applications of Computer Vision (WACV) (pp. 1743-1751). IEEE.

[89] Jinson K V. Google will help insurers measure slip and fall risks in buildings.

Retrieved July 19, 2021 from https://techiestechguide.com/google-will-help-

insurers-measure-slip-and-fall-risks-in-buildings/

[90] Abhishek Mukhopadhyay, Pradipta Biswas, Ayush Agarwal, and Imon

Mukherjee. 2019. Performance Comparison of Different CNN models for Indian

Road Dataset. In Proceedings of the 2019 3rd International Conference on

Graphics and Signal Processing (ICGSP '19). Association for Computing

Machinery, New York, NY, USA, 29–33.

DOI:https://doi.org/10.1145/3338472.3338480

[91] Yotaro Fuse, and Masataka Tokumaru. "Navigation Model for a Robot as a

Human Group Member to Adapt to Changing Conditions of Personal

Space." Journal of Advanced Computational Intelligence and Intelligent

Informatics 24, no. 5 (2020): 621-629.

[92] Photchara Ratsamee, Yasushi Mae, Kenichi Ohara, Masaru Kojima, and Tatsuo

Arai. "Social navigation model based on human intention analysis using face

orientation." In 2013 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp. 1682-1687. IEEE, 2013.

[93] Woldstad, J. C. (2000). Digital human models for ergonomics.

[94] Mixamo. Adobe. Retrieved August 27, 2021 from

https://www.mixamo.com/#/?page=1&type=Motion%2CMotionPack

[95] Animation Controller. Unity Manual. Retrieved August 31, 2021 from

https://docs.unity3d.com/Manual/class-AnimatorController.html

[96] Milne, G. J., & Xie, S. (2020). The effectiveness of social distancing in mitigating

COVID-19 spread: a modelling analysis. MedRxiv.

[97] 8. Vuorinen, V., Aarnio, M., Alava, M., Alopaeus, V., Atanasova, N., Auvinen,

M., ... & Hayward, N. (2020). Modelling aerosol transport and virus exposure with

numerical simulations in relation to SARS-CoV-2 transmission by inhalation

indoors. Safety Science, 104866.

[98] 9. Sharma, S 2020, Social distancing in the workplace: the new norm, Buro

Happold, Accessed 7 August 2020,

<https://www.burohappold.com/articles/social-distancing-in-the-workplace/#>.

[99] 10. Fort, J., Adam Crespi, Chris Elion, Rambod Kermanizadeh, Priyesh Wani,

Danny Lange, “Simulation + Coronavirus”, Unity Technologies White Paper

2020.

[100] 11. Google Sodar n.d., Google Inc., Accessed 7 August 2020,

<https://sodar.withgoogle.com>.

[101] 12. Brad Porter, Amazon introduces 'Distance Assistant', The Amazon Blog,

Accessed 09 August 2020, <https://blog.aboutamazon.com/operations/amazon-

introduces-distance-assistant> , June 23,2020

[102] Hagras, H. (2018). Toward human-understandable, explainable AI. Computer,

51(9), 28-36.

[103] Mukhopadhyay, A., Mukherjee, I., & Biswas, P. (2020, September). Decoding

cnn based object classifier using visualization. In 12th International Conference

on Automotive User Interfaces and Interactive Vehicular Applications (pp. 50-

53).

[104] ProBuilder n.d., Unity Technologies, Accessed 6 August 2020,

https://unity3d.com/unity/features/worldbuilding/probuilder.

[105] Murthy LRD, Arjun S, Saluja KPS and Biswas P (2019), Smart Sensor

Dashboard, 7th International Conference on PLMSS (Product Life Cycle

https://blogs.unity3d.com/2020/05/01/synthetic-data-simulating-myriad-possibilities-to-train-robust-machine-learning-models/
https://blogs.unity3d.com/2020/05/01/synthetic-data-simulating-myriad-possibilities-to-train-robust-machine-learning-models/
https://unity.com/
https://docs.unity3d.com/ScriptReference/AI.NavMesh.html
https://unity3d.com/unity/features/worldbuilding/probuilder
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@7.1/manual/Ray-Tracing-Path-Tracing.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@7.1/manual/Ray-Tracing-Path-Tracing.html
https://unity.com/ray-tracing
https://mathworld.wolfram.com/
https://en.wikipedia.org/wiki/Navigation_mesh
https://blogs.unity3d.com/2020/09/17/training-a-performant-object-detection-ml-model-on-synthetic-data-using-unity-computer-vision-tools/
https://blogs.unity3d.com/2020/09/17/training-a-performant-object-detection-ml-model-on-synthetic-data-using-unity-computer-vision-tools/
https://techiestechguide.com/google-will-help-insurers-measure-slip-and-fall-risks-in-buildings/
https://techiestechguide.com/google-will-help-insurers-measure-slip-and-fall-risks-in-buildings/
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://unity3d.com/unity/features/worldbuilding/probuilder

Lab Report BT Internal 20

Modelling, Simulation and Synthesis) 2019, https://arxiv.org/abs/2005.05025

[106] Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding

convolutional networks. In European conference on computer vision (pp. 818-

833). Springer, Cham.

[107] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D.

(2017). Grad-cam: Visual explanations from deep networks via gradient-based

localization. In Proceedings of the IEEE international conference on computer

vision (pp. 618-626).

[108] Volk, R., Stengel, J. and Schultmann, F., 2014. Building Information Modeling

(BIM) for existing buildings—Literature review and future needs. Automation in

construction, 38, pp.109-127.

[109] Kupriyanovsky, V., Klimov, A., Voropaev, Y., Pokusaev, O., Dobrynin, A.,

Ponkin, I. and Lysogorsky, A., 2020. Digital twins based on the development of

BIM technologies, related ontologies, 5G, IoT, and mixed reality for use in

infrastructure projects and IFRABIM. International Journal of Open Information

Technologies, 8(3), pp.55-74.

[110] Lu Q., Xie X., Heaton J., Parlikad A.K., Schooling J. (2020) From BIM Towards

Digital Twin: Strategy and Future Development for Smart Asset Management.

In: Borangiu T., Trentesaux D., Leitão P., Giret Boggino A., Botti V. (eds) Service

Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the

Future. SOHOMA 2019. Studies in Computational Intelligence, vol 853.

Springer, Cham. https://doi.org/10.1007/978-3-030-27477-1_30

[111] Tridify 2020, Tridify Ltd., Accessed 6 August 2020, <https://www.tridify.com>.

[112] PiXYZ Plugin n.d., PiXYZ Software, Accessed 6 August 2020,

<https://www.pixyz-software.com/plugin/>.

[113] Unity Reflect n.d., Unity Technologies, Accessed 6 August 2020,

<https://unity.com/products/unity-reflect>.

[114] Johnson R., “Method for creating a digital twin of a room,” Eur. Patent Application

16186640.5, Mar.7, 2018.

[115] ProGrids n.d., Unity Technologies, Accessed 6 August 2020,

https://docs.unity3d.com/Packages/com.unity.progrids@3.0/manual/index.html

[116] TurboSquid 2020, Accessed 6 August 2020, https://www.turbosquid.com/

[117] Sketchfab 2020, Accessed 6 August 2020, https://sketchfab.com/

[118] Woldstad, J. C. (2000). Digital human models for ergonomics.

[119] Mixamo. Adobe. Retrieved August 27, 2021 from

https://www.mixamo.com/#/?page=1&type=Motion%2CMotionPack

[120] Paisley, J., Blei, D., & Jordan, M. (2012). “Variational Bayesian inference with

stochastic search”. In: International Conference on Machine Learning (pp. 1367–

1374).

[121] Burda, Y., Grosse, R., & Salakhutdinov, R. (2015). Importance weighted

autoencoders. arXiv preprint arXiv:1509.00519.

[122] Chen, R. T., Li, X., Grosse, R., & Duvenaud, D (2018). “Isolating sources of

disentanglement in VAEs”. In: Proceedings of the 32nd International Conference

on Neural Information Processing Systems. Curran Associates Inc. (pp. 2615–

2625).

[123] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A. and Bengio, Y. (2014). Generative adversarial nets. Advances in

neural information processing systems, Volume 27, (pp. 2672-2680).

[124] Shaham, T.R., Dekel, T. and Michaeli, T., 2019. Singan: Learning a generative

model from a single natural image. In Proceedings of the IEEE International

Conference on Computer Vision (pp. 4570-4580).

[125] Xian W, Sangkloy P, Agrawal V, Raj A, Lu J, Fang C, Yu F, Hays J. (2018).

Texturegan: Controlling deep image synthesis with texture patches. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (pp. 8456-8465).

[126] Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a gaussian

denoiser: Residual learning of deep cnn for image denoising. IEEE Transactions

on Image Processing, 26(7), 3142-3155.

[127] Zontak, M., & Irani, M. (2011). Internal statistics of a single natural image. In

CVPR 2011 (pp. 977-984). IEEE.

[128] Zontak, M., Mosseri, I., & Irani, M. (2013). Separating signal from noise using

patch recurrence across scales. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (pp. 1195-1202).

[129] Denton , E.L., Chintala, S. and Fergus, R. (2015). Deep generative image

models using a laplacian pyramid of adversarial networks. In Advances in neural

information processing systems (pp. 1486–1494).

[130] Huang, X., Li, Y., Poursaeed, O., Hopcroft, J. and Belongie, S. (2017). Stacked

generative adversarial networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 5077-5086).

[131] Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans

for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.

[132] Barnett, S.A. (2018). Convergence Problems with Generative Adversarial

Networks (GANs). Mathematical Institute, University of Oxford.

[133] Park, S. W., Huh, J. H., & Kim, J. C. (2020). BEGAN v3: Avoiding Mode Collapse

in GANs Using Variational Inference. Electronics, 9(4), 688.

[134] Kingma DP and Welling M (2014), Auto Encoding variational bayes,

Proceedings of International conference on Learning Representations (ICLR

14).

https://arxiv.org/abs/2005.05025
https://docs.unity3d.com/Packages/com.unity.progrids@3.0/manual/index.html
https://www.turbosquid.com/
https://sketchfab.com/
https://www.mixamo.com/#/?page=1&type=Motion%2CMotionPack

Offices worldwide
The services described in this publication are subject to
availability and may be modified from time to time.
Services and equipment are provided subject to British
Telecommunications plc’s respective standard conditions
of contract. Nothing in this publication forms any part of
any contract.

© British Telecommunications plc 2020
Registered office: 81 Newgate Street, London EC1A 7AJ.
Registered in England No: 1800000.

