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A Virtual Reality-Based Digital Twin of 
workspaces with Social Distance 
Measurement Feature 

The Covid-19 pandemic resulted in a catastrophic loss to global 
economies, and social distancing was consistently found to be an effective 
means to curb the virus's spread. However, it is only as effective when every 
individual partakes in it with equal alacrity. Past literature outlined scenarios 
where computer vision was used to detect people and to enforce social 
distancing automatically.  
 
We have created a Digital Twin (DT) of an existing office and laboratory 
space for remote monitoring of room occupancy and automatically 
detecting violation of social distancing. To evaluate the proposed solution, 
we have implemented a Convolutional Neural Network (CNN) model for 
detecting people, both in a limited-sized dataset of real humans, and a 
synthetic dataset of humanoid figures.  
 
Our proposed computer vision models are validated for both real and 
synthetic data in terms of accurately detecting persons, posture and 
intermediate distances among people. We presented two applications of 
the work in estimating maximum occupancy of an arbitrary shaped room 
maintaining social distancing and developing synthetic dataset for non-
conventional traffic participants in the context of autonomous vehicles.  
Finally, we used intermittent layer and heatmap based data visualization 
techniques to explain the failure modes of a CNN. 
  

1. Introduction 

The CoVID-19 pandemic is considered to be one of the worst 

disasters for humanity after the Second World War. Social 

distancing, wearing masks and frequent sanitization of ones’ 

hands in common spaces became the norm. Social 

distancing has been proved to be effective in hindering virus 

transmission by increasing the physical distance between 

people or reducing the congestion in socially dense 

community atmospheres such as schools, colleges, and 

workplaces [15, 3, 19, 16]. Existing approaches of 

enforcement of social distancing involve manual inspection 

of common spaces using personnel. Most of such methods 

require several personnel on the ground doing laborious job 

of monitoring people around them. Automating the 

monitoring of human beings and enforcing social distancing 

saves humongous effort from such personnel. Efforts are 

already underway to use computer vision techniques to 

perform tasks like using traditional and thermal cameras to 

measure body temperature and to identify excessive 

pedestrian flow at public places. Enforcing social distancing 

involves detecting the humans in a space and measuring the 

distances between them. Existing approaches using object 

detection datasets [41, 11] and models [58, 85] enable us to 

detect humans but monitoring the distance between two 

individuals is a challenging problem. Existing datasets in 

object detection and allied fields focus on the entity 

identification or relation between two entities like in the case 

visual captioning [60] but relating two entities using a physical 

metric is a novel challenge.  

In this context, we propose a Digital Twin of a workspace 

through an interactive and immersive  Virtual Reality 

Experience. Users can move around the space virtually and 

remotely, as they would in the real-world. The benefits of 

using a DT as a visualization medium are multifold. Firstly, it 

provides an interactive and intuitive virtual experience that 

can also be used in VR. Users can navigate around the virtual 

environment as they would in the real world. Secondly, a 

virtual environment protects the privacy of the occupants 
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through abstract humanoid figures than a direct video feed.  

In the virtual world, a virtual camera is simulated at the same 

position from where the real-world feed was recorded. We 

then map the two-dimensional centroid coordinates onto 

the virtual camera’s feed. Moreover, through a Ray cast 

operation, the two-dimensional coordinates are mapped to 

the three-dimensional coordinates of the virtual world, and 

hence people’s movements are simulated in real time.  

The digital twin is equipped with weather monitoring and 

room occupancy measurement feature. We utilized existing 

object detection model and used transfer learning 

technique to detect persons in workspaces. We recorded 

images under 32 combinations including different positions 

and postures. We also undertook posture estimation to 

improve accuracy of the digital twin and help in explaining 

violation of social distancing. For example, whether more 

than one person is sitting together or sitting and standing or 

only standing- all indicate different activity trend for violating 

social distance. Policies can be made accordingly like 

prohibiting people to eat together in office spaces. We 

determined the postures of humans using the recorded 

dataset using interior-hip angle obtained from existing state-

of-the-art pose estimation model and this method classifies 

whether a person is sitting or standing with 84% accuracy. 

After mapping real world position and posture to Digital Twin, 

we converted the bounding box predictions from person 

detection module into real world dimensions, followed by an 

investigation into the effectiveness of our proposed 

approach using both virtual and real-world data. We found 

a correlation of 0.82 between actual and measured distance 

with 𝑅2 = 0.67. 

 

Further, we investigated finding the optimal number of 

people that can be accommodated in office space based 

on the standard social distancing guidelines. Finding the 

maximum number of people that can fit in a defined space 

while maintaining social distancing is challenging for 

numerous reasons. This problem is modelled as a classical 

circle packing problem [77], when each individual is 

depicted as the center of a circle, where the circles are to 

be arranged in a given space such that their centers stay 

within the bounds, and simultaneously avoid other objects 

(such as furniture) intrinsic to that space. These categories of 

problems cannot be solved in polynomial time, thereby 

falling under the NP-Hard category. Our approach is based 

on a heuristic algorithm which aims to provide close 

approximate solutions. We also accounted for the fact that 

with the obstacles in a workplace such as pieces of furniture 

and building structures, the polygon to pack may resemble a 

convex highly irregular structure. We adopted basic 

concepts of circle packing algorithm [83] and modified it for 

irregular shapes as discussed in further detail in Section 6.1. 

Additionally, we used data visualization techniques to 

explain the working of a complex machine learning system 

like a Convolutional Neural Network (CNN) to help us to 

debugging the performance of the system. 

 

The key contributions of this work are as follows: 

 

• We proposed a validated technique for synthetic data 

generation using photo realistic Digital Twin. 

• We validated accuracy of person detections between 

real and synthetic image and in both cases, it was found 

to be more than 91%. 

• We designed an algorithm for estimating the maximum 

room occupancy under social distancing norms via 

circle packing techniques and compared the results to 

that of proved optimal packing structures. 

 

We briefly discuss about Related Work in section 2, followed 

by the methodologies of the proposed approach in section 

3. We discuss about developing a VR based simulator in 

section 4. We discuss in detail about validating the proposed 

models of person detection, pose estimation and social 

distance measurements in section 5 followed by applications 

and visualization techniques in sections 6 and 7, respectively. 

The penultimate section highlights the utility and value 

addition of the system, followed by concluding remarks. 

2. Related work 

2.1 Digital Twins 

The first digital twin (DT) implementation dates back to NASA's 

Apollo program [17], where they were used in live missions to 

replicate the problem scenarios faced by the crew in space. 

NASA [21] formalized the DT definition in 2012 as an 

integrated Multiphysics, multiscale, probabilistic simulation of 

an as-built vehicle or system that uses the best available 

physical models, sensor updates, fleet history, among other 

available data to mirror the life of its corresponding flying 

twin. Tao et al. [63] highlighted the state-of-the-art in industrial 

DTs, according to the which, DTs have been implemented in 

three key application areas (i) product design, (ii) 

production, and (iii) prognostics and health management 

(PHM), the majority of which was focused on PHM. Khajavi et 

al. [35] explored a DTs' use in a smart building scenario by 

replicating a part of its front facade. The facade was 

visualized by assigning different yellow shades to the 

respective lux values received from the sensor.  

Several commercial solutions have also emerged due to 

the diverse possibilities and benefits. One example is the 

Azure Digital Twins (ADT) [36], a cloud-based service that 

aimed to democratize DT deployment by providing a 

software as a service solution. Steelcase, a company known 

for designing workspaces, developed a space-sensing sensor 

network using ADT [45]. By implementing a suite of wireless 
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infrared sensors, they generated analytics on how their 

spaces were being utilized, which in turn was used to 

enhance reliability and efficiency. ICONICS [44] also utilized 

ADT to create a virtual representation of a physical space to 

improve energy efficiency, optimize space usage, and lower 

costs. Nikolakis et al. [51] utilized digital manikins for simulating 

human activities in a DT of a factory floor. It was concluded 

that the twin could help maintain better ergonomics among 

the shop floor workers. 

2.2 Digital Twins in Covid-19 

Through real-time sensor data and accurate simulations, 

digital twins could play a vital role in containing the 

coronavirus’ spread of the coronavirus. For example, Milne et 

al. [96] modeled a city in Australia to understand the 

effectiveness of social distancing, and they reported that it 

contributed a substantial factor in flattening the epidemic 

curve. A consortium among Aalto University, Finnish 

Meteorological Institute, VTT Technical Research Centre of 

Finland, and the University of Helsinki [97] studied the 

transmission of the virus by modeling possible scenarios in 

indoor spaces. They examined various situations like when a 

person coughs in aisles in grocery stores. A blog post from 

Buro Happold [98] concluded that the traditional workplace 

model is not effective in managing social distancing. Unity 

Technologies [99] built an open-source simulator concept for 

visualizing the spread of Covid-19 in a fictitious three-

dimensional grocery store environment. Industry big players, 

Google and Amazon, have also added their efforts to make 

social distancing hassle-free in indoor and outdoor spaces. 

Google released a web application called SODAR [100] that 

uses WebXR technology to help workers maintain the 

necessary distance. It worked by drawing a 2-meter circle 

around the user as he or she walked and alerted the user if 

another person were to enter this circle. Amazon [101] has 

also developed a mirror-like tool that helps employees 

observe physical distancing in an office workspace. It 

applied Augmented Reality and Machine Learning 

techniques to provide visual feedback to the employees. It 

portrayed a person inside a red circle if they were to enter 

within 6-feet of any other person. 

2.3 Person Detection 

Although earlier work [13] explored enforcement of social 

distancing through DTs or 3D simulations, there is not much-

reported work on rigorous validation of the system. Pedestrian 

or person detection is one of the key research areas in the 

computer vision domain. It has applications in autonomous 

vehicles, video surveillance, robotics, among others. In the 

early stage of pedestrian/person detection research, people 

used Haar wavelet features [54, 46, 73] or component-based 

pedestrian detection [46, 79, 75]. With the increase of 

computational power of the systems, people started to use 

gradient-based representation [20, 86, 75] and Deformable 

Part based Model (DPM) and its variants [14, 20, 59]. Dalal 

and Triggs [10] used a normalized histogram of orientation 

features to make feature descriptors. They used linear support 

vector machines (SVM) to train the descriptors for detecting 

pedestrians. Zhu and others [86] used HOG features 

combined with a cascade-of-rejectors approach to make 

person detection faster and more accurate. Felzenszwalb et 

al [14] followed the “divide and conquer” detection 

philosophy, where the training could be considered as the 

learning of a proper way of decomposing an object, and the 

inference could be considered as an ensemble of detections 

on different object parts. Later they developed a grammar 

model for person detection [20]. They constructed the 

grammar model to describe of the number of visible people. 

Sadeghi and Forsyth [59] speeded up the performance of 

DPM by introducing various mechanisms. To speed up 

feature extraction, they used HOG features and interpolated 

templates.  

Hosang et al [23] first used Convolutional Neural Networks 

(CNN) for pedestrian detection. They compared different 

sized ConvNets with architectural differences and 

parameters. Although Fast and Faster RCNN methods 

performed well for general object detection, their 

performance lacked in detecting smaller pedestrian due to 

the low resolution of the feature map. Zhang et al [85] 

addressed this issue by feature fusion using a boosted forest 

technique. Cao et al [5] introduced a unified Multi-layer 

Channel Features (MCF) which integrated handcrafted 

features (HOG + LUV) in each layer of the CNN. Then they 

used multi-stage cascade AdaBoost to learn from features 

extracted in the layers. Hu et al [25] used feature maps 

extracted by CNN as input features for assembling boosted 

decision models to detect pedestrians. Tian et al [64] 

optimized pedestrian detection task with semantic 

segmentation to improve hard negative detection. To 

overcome the problem of occlusion, illumination and lighting 

variance, Xu et al [81] proposed a cross-modality learning 

framework with input images from RGB camera and thermal 

camera. Wang et al [76] also addressed the occlusion 

problem by proposing bounding box loss function named 

repulsion loss function. Apart from computer vision, recent 

efforts also investigated estimating room occupancy by 

listening Wifi probe emitted from mobile phones and use it to 

measure slip and fall risk [89]. 

2.4 Human Pose Estimation 

Human pose estimation (HPE) had been extensively studied 

in computer vision. 2D HPE methods are categorized into 

single-person and multi-person settings. The former setting has 

two popular approaches: (I) Regression methods that directly 

map from input images to body joints; (II) Body Part Detection 

methods that has two steps: the first is to generate heat maps 
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of key points for body part localization and the second step 

involves assembling the detected points into the whole-body 

skeleton. There are two deep learning-based approaches for 

multi-person setting as well. (I) Top-down methods  [55, 27, 80, 

62, 39, 47, 74, 26, 4, 84] that detect all people first and then 

utilize single-person HPE methods to construct key points for 

each; (II) Bottom-up methods [6, 56, 30, 29, 49, 18, 65, 37, 50, 

32, 8] first detect the body key points without knowing the 

number of people, then group the key points into individual 

poses. Several of these systems reportedly failed to detect 

persons due to occlusion or truncation. Iqbal and Gall [31] 

built a convolutional pose machine (CPM)-based pose 

estimator to estimate the joint candidates and used Integer 

linear programming (ILP) to detect poses even in the 

presence of severe occlusion. Numerous works used top-

down approaches, but bottom-up processes are faster than 

the top-down approaches since they do not detect posture 

for each person. Cao et al [6] built a detector named 

OpenPose that uses a CPM to predict joints via heatmaps 

and Part Affinity Fields (PAFs) to associate the key points to 

each person. Although OpenPose achieved high-

performance in high-resolution images, they reported a poor 

performance with low-resolution images and occlusions. To 

address this problem, Kreiss et al [37] proposed BifPaf that 

uses Part Intensity Field (PIF) to predict the locations of body 

parts and a Part Association Field (PAF) to represent the joints 

association. These methods outperform previous OpenPose 

methods on low-resolution and occluded images. 

2.5 Digital Twins as Synthetic Data 

Synthetic data has exhibited propitious outcomes in the past 

[66, 22] and the turnaround time for generating labelled data 

for a new product variant is also drastically reduced [61]. A 

further benefit of using synthetic data is the ability to rapidly 

iterate without undergoing a time-consuming data 

acquisition process. However, disparities with real world 

scenario prevent researchers from depending on synthetic 

data entirely. Tremblay [67] aimed to bridge this gap 

between real and synthetic data by employing a technique 

known as Domain Randomization. Recently, Unity 

Technologies introduced a tool called the Perception 

package [1], which made it simpler to generate synthetic 

datasets. They tested an object detection model trained with 

data produced by the perception package on the Faster R-

CNN [82] and found that it performed better with objects that 

had complex orientations, configurations, and lighting 

conditions than the model trained with real world data. 

Microsoft AirSim [43] is a tool/simulator used for the sole 

purpose of testing drones and autonomous vehicles in a VE. 

However, it was designed as more of a testing and evaluation 

platform than to generate synthetic data. UnrealROX [42] is 

another tool built over the Unreal engine to generate 

photorealistic synthetic datasets but targeted more towards 

robotic vision researchers. Unity Technologies [33] also 

implemented a similar approach for vision-based robotics in 

the Unity engine. The ParallelEye dataset [40] carried out 

similar efforts of generating synthetic datasets for training 

traffic vision models in the Unity engine. Exploiting the virtual 

nature of these datasets, they simulated various 

environmental conditions and camera parameters with the 

goal of generating diverse data. Although it was found that 

a Variable AutoEncoder (VAE) can detect camera rotation 

and emotion of Frey face, but neither VAE [2, 7, 52] nor 

Generative Adversarial Network (GAN) [12, 28, 34] can add 

multiple objects and persons in an image by keeping a few 

features constant and varying others. In summary, synthetic 

data has proven to be a successful alternative for collecting 

data to train neural networks. 

2.6 Visualization of CNN 

Although CNN based object recognition has achieved 

impressive performance, working with CNNs poses the 

challenge of working with a black box. The features learned 

in different layers of the CNN are difficult to understand unless 

we can visualize how they work. Explainable AI (XAI) looks to 

overcome these concerns, providing transparent models 

(white box) that allow humans to understand how an AI 

decision has been made; therefore, they do not rely on data 

only, but can be improved by human observations [102]. A 

brief literature survey on the application of CNN visualization 

techniques can be found in [103]. 

2.7 Summary 

In summary, past literature has primarily focused on using DTs 

in industrial scenarios [63]. While there is literature on using 

twins for workspaces, only Nikolakis et al. [51] focus on 

mapping a person's position and posture using expensive 

depth cameras. Fuse et al [91] proposed a robot navigation 

model to determine robot’s trajectory and to help robots 

maintain distance in robot-human space. Ratsamee et al 

[92] also proposed a robot navigation model in robot-human 

space based on human motion and their facial orientation. 

Synthetic data has also proven to be a successful alternative 

to generating annotated datasets and particularly essential 

during a pandemic. Moreover, we infer that the existing 

state-of-the-art object detection models fail to detect 

humans with the same degree of accuracy as they do on 

general object detection. Numerous approaches were 

proposed to overcome this limitation. Similarly, even though 

various datasets and approaches exist for human pose 

estimation, techniques to estimate poses under large-

occlusion in a multi-person setting, fall short of their single-

person counterparts. Besides, the existing approaches rely on 

estimating key points to determine the pose rather than a 

direct posture mapping like standing, sitting, walking and so 
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on. In this work, we address all these limitations using 

approaches detailed in the subsequent sections. 

3. Our Proposed Approach 

There has not been a unified approach when it comes to 

modeling Digital Twins in the past literature, and according to 

Tao et al. [63], a generic framework is critically needed. They 

also outlined five dimensions that are to be addressed while 

modeling a twin: a physical part, a virtual part, data, a 

connection between these, and a service modeling. We 

designed a DT of a laboratory space using the Unity 3D [68] 

game engine and its modelling tool, Probuilder [104]. The twin 

served as a three-dimensional illustration of the physical 

space whose dimensions were accurately mapped to the 

twin. Furthermore, the furniture and other objects in the 

physical space were also replicated in the virtual world. To 

improve the VE's photorealism, baked global illumination was 

used, which entails computing the lighting behavior and 

characteristics beforehand and storing them as texture files; 

this technique also reduces the computational load present 

in real-time global illumination. Additionally, Physically Based 

Materials or PBR [38] were used as they physically simulate 

real-life materials' properties such that they accurately reflect 

the flow of light and thereby achieve photorealism. We 

deployed the twin on a Virtual Reality (VR) setup, specifically, 

the HTC Vive Pro Eye [24] since VR allows for immersive and 

interactive virtual walkthroughs.  

 

The physical and the virtual world are connected through 

sockets. Specifically, we map the weather properties of the 

space, such as Temperature and Humidity measured via the 

DHT-11 sensor. Furthermore, through a Ray cast operation, 

the two-dimensional coordinates are mapped to the three-

dimensional coordinates of the virtual world, and hence 

people’s movements are simulated. To ensure the twin was 

as photorealistic as feasible for data generation, we 

employed Unity's Ray tracing [72] tools, instead of the 

traditional Rasterized renderer. Ray tracing is a rendering 

technique that involves tracing individual rays of light as it 

bounces off virtual objects in the scene. Specifically, we used 

Unity's path tracing algorithm [71] with a sample count of 

4096, i.e., the algorithm traces 4096 rays of light and requires 

4096 frames to generate a single image. Hence, if the 

simulation runs at 30 frames per second, it will take around 2.3 

minutes to generate one image. To automate the process 

and increase the dataset’s diversity, we utilized Unity's 

perception package. We were able to generate high-fidelity 

ray traced synthetic datasets of humanoids in a sitting or 

standing pose through the perception package and its in-

built randomizer. By exploiting this randomizer, the humanoids 

pose, i.e., the position and orientation, were changed 

according to a random seed with each iteration. By 

randomizing their pose on a fixed z-axis, we were also able to 

ensure that the humanoids did not clash with one another. 

3.1 Planned Physical Setup 

In the planned deployment, each meeting room will have 

a set of weather monitoring sensors and cameras (Figure 1). 

Data from sensors and cameras will be collected and 

processed on a local computer. Processing will involve noise 

cancellation from sensor readings through low pass filtering 

and calculating the number of people inside each meeting 

room using a Convolutional Neural Network (CNN). The 

processed data will be sent to a central computer equipped 

with a high-end Graphics Processing Unit (GPU) using network 

sockets. The VR-based Digital Twin will be deployed on this 

machine and will be updated with a real-time sensor feed. A 

demonstration video of the implementation can be found at 

https://youtu.be/XGYvDnwbyhM  while a web version can be 

found at http://cambum.net/BT/BTWebGL/    

Figure 1 below shows a schematic diagram of the planned 

deployment of the Digital Twin implementation, gathering 

real-time data from a camera and IoT sensors like 

temperature, humidity. A similar setup was earlier deployed 

for smart manufacturing capabilities [105]. 

 

 
Figure 1: Planned setup of the VR-based Digital Twin. 

3.2 Person Detection 

We developed the Digital Twin for measuring occupancy of 

laboratory and enforcing social distancing. For detecting 

presence of humans in the laboratory workspace, we used 

ImageAI python library for custom object detection training 

using YOLOv3 architecture. We chose YOLOv3 as our person 

detection model based on comparison studies that 

suggested that YOLOv3. 

 

• Is better than Faster RCNN, Mask RCNN, SSD, and 

RetinaNet in terms of accuracy and latency [48, 57, 

90]. 

• Performed better than other models on artwork or 

synthetic images when the model was fine-tuned 

with artwork [58].  

 

We used a transfer learning technique to fine-tune the model 

with a person dataset downloaded from Open Images 

http://cambum.net/BT/BTWebGL/
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Dataset [53]. This dataset contained both real images as well 

as artwork images. We used 2022 images in total with the 

label 'person', showing single or multiple individuals. We 

separated the total dataset into an 80:20 ratio for training 

and validation. We prepared the dataset by converting 

annotation files into xml format. The existing annotation files 

were in Darknet format, which is the actual backend used for 

training YOLO. We trained the model using Keras with 

Tensorflow backend. Model was trained for 200 epochs with 

batch size of 4 using NVIDIA GeForce RTX 2070 GPU. 

3.3 Pose Estimation 

We developed the DT for a laboratory space where sitting 

and standing are the two common postures. We undertook 

a study to classify and to reciprocate these two postures in 

the DT to make it more realistic.  We used a PyTorch 

KeypointRCNN model with a ResNet50 backbone to detect 

key points of the human body trained with ImageNet and 

COCO 2017 dataset after comparing with other pose 

estimation models like AlphaPose, OpenPose. The model 

takes input of a list of tensors, shapes, and range between [0-

1]. During inference, and returns a list of dictionaries. The fields 

of dictionaries are as follows: 

 

• Predicted boxes are in [x1, y1, x2, y2] format, with 0≤ 

x1<x2≤w and 0≤ y1<y2≤h. 

• Predicted labels and score of those labels for each 

image. 

• Location of predicted key points. 

 

The model may predict multiple bounding boxes and sets of 

key points for a prediction. We used the threshold value of 0.9 

to filter out confident estimates and to eliminate multiple 

predictions. 

3.4 Mapping Position and Posture to Digital Twin 

We mapped each person's position and posture (sitting or 

standing) to the twin via virtual humanoids. This way we are 

not only able to visualize and generate analytics of how 

spaces are being used, but we are also respecting the 

privacy of everyone as we are not showing face or other 

identifiable personal features. We mapped virtual camera's 

position and orientation to the real-world camera. The 

PyTorch KeypointRCNN processes the real-world camera's 

video feed, through which the centroid values, i.e., the pixel 

position of the individuals on the screen space, was 

extracted. This data was packed into a JSON format and is 

relayed to the DT in real-time via UDP sockets. Since the real-

world camera's view and the virtual camera's view are 

identical, the pixel positions (centroids) from the real-world 

camera can be mapped with ease to the virtual camera's 

screen space. We define a three-dimensional vector by 

substituting the centroid for the x and y values and the virtual 

cameras near clip plane as the z value. We then subtract 

from this vector, the virtual camera's position vector and 

normalize the result. The result is a direction vector that 

establishes the direction to travel to the centroid point from 

the virtual camera, or the direction in which to place the 

humanoid.  

 

The main Unity feature used is the NavMesh [69] AI surface 

and agent. Given a layout with multiple obstacles, NavMesh 

automatically generates accessible and non-accessible 

surfaces for an agent to walk or occupy. Once this NavMesh 

surface is generated, the NavMesh agents (the virtual 

humanoids in this case) automatically avoid obstacles while 

moving from one point to another (also avoid colliding with 

one another). A* algorithm is used to compute the path 

between source and destination. Here, the respective 

destinations are continuously updated from the output of 

Python script which provides real-time positions of persons 

detected in the physical world. The virtual humanoids also 

have an animator controller (known as third person 

character controller) and a set of sitting, standing, and 

walking animations which are triggered correspondingly 

based on the posture and movements of persons detected 

and provided by the Python script.  

 

We aimed to add animations (life-like movements) to the 

humanoids which would be spawned in the virtual world 

based on the detection and mapping done in the real world. 

Using digital humanoid models, design engineers can 

position and manipulate operators of varying anthropometry 

within the simulated work environment. Digital humanoid 

models are composed of more than 90 different links/joints 

and 140 degrees of similar to that used in many 

biomechanical models of the human body [93]. The 

humanoid model's armature (base skeleton rig) is rigged 

automatically with the motion capture data [94] to fit real life 

poses which follows the ergonomics of any work environment 

and hence mimic real-life movements. (Figure 2). These 

skeletal animations were imported into the unity project and 

mapped onto the existing humanoids and were 

called/executed based on the movements in the real-world 

detection (Figure 2). The various animations used in this use 

case included idle, walking, sitting, stand to sit and sit to stand 

animations to mimic the poses which may occur in a typical 

working environment. The animations were exported in the 

form of fbx format from [2] and were imported into unity 

game engine where all the animations were imported into an 

animator which would control the flow of the animations to 

be executed based on the actions being performed by 

humans in the real world. The Unity animator system provides 

an animation controller [95] which allows one to arrange and 

maintain a set of animation clips and associated animation 

transitions for a character or object. It allows for changing 
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multiple animations and switching between them when 

certain game conditions occur. In our case humanoid would 

switch from a walk animation clip to a sitting animation clip 

whenever a person would sit on a chair in the real-world. 

(a) (b) 

Figure 2: Movement of humanoids in virtual environment. (a) Humanoid is 
walking towards a chair. (b) Sitting posture of humanoid. 

3.5 Social Distance Measurement 

Bertoni [87] worked on silhouettes of people in outdoor 

environment by using 3D distances. In our case, we measured 

distance between persons in indoor environment. Initially, we 

fixed a camera at a particular height of the room in real 

world. Then we used this height and fixed the camera in 

virtual world in such a way so that field of view of the camera 

will be same in both virtual and real world. We used trained 

model to generate a set of bounding boxes and a unique ID 

for each humanoid. To measure distances between persons, 

we calculated the distance between persons from bounding 

box references generated by YOLO following Punn's work 

[57] on measuring distance among pedestrians from video 

recorded by road surveillance camera. We calculated 

bounding boxes and corresponding centroids for each 

bounding box in a frame recorded through the VE. We 

computed pairwise Euclidian distance between centroids 

(Equation 1) and 𝑝 × 𝑝 matrix, where 𝑝 denoted number of 

persons detected at any instance.  

 

𝑑(𝑚, 𝑛) =  √∑ (𝑚𝑖 − 𝑛𝑖)2𝑛
𝑖=1                              (1)  

 

Where n is two-dimensional space and m, n are two centroids 

in 2D space. It may be noted that the present version of our 

algorithm does not take posture of a person as input, but we 

tested the performance of the algorithm for both standing 

and sitting posture. 

3.6 Explanation through Visualization 

We mapped each person's position and posture (sitting or 

standing) To understand how the CNN performs, we 

investigated two different types of CNN visualization 

techniques:  

 

(I) Visualizing intermediate layers of a CNN model 

following Zeiler and Fergus [106]. This visualization 

technique was useful to understand how successive 

convnet layers transformed their input. It also gave us the 

idea of what type of features were extracted by different 

filters of different layers of CNN model from input images.   

(II) Grad-CAM [107] based visualization aims to 

understand which part of the image had a maximum 

association in predicting person classes. To obtain the 

class discriminative localization map corresponding to a 

specific class, we calculated the gradient with for feature 

maps of the last convolutional layer. These gradients were 

globally average pooled to obtain weights corresponding 

to the class, followed by a weighted combination of 

activation maps where finally, we applied a ReLU 

function. Thus, we obtained a coarse heatmap of the 

same size as the feature map in the last convolutional 

layer of the CNN model. In the final step, we resized the 

coarse heatmap to the input image size and overlapped 

on the input image. Thus, the Grad-CAM based heatmap 

helped us visualize which part of the image had a 

maximum association with the class of interest.  

 

We applied these two techniques on synthetically generated 

and real images to understand if there was any difference in 

extracting features for predicting persons in the images. In 

the following sections, we described our approach for 

developing the VR-based Digital Twin and using it to train and 

explain the functioning of the CNN in detail.  

4. VR Simulator Development 

4.1 Modelling 

The construction of an accurate virtual twin requires precise 

information about the object’s geometrical dimensions and 

physical properties. Moreover, there is more than one way of 

implementing it. Building Information Modelling (BIM) [108] is 

a growing technology in the AEC industry that advances 

planning and designing infrastructure by portraying the 

building's properties in 3D. BIM is used in several past works 

[109, 110], and commercial services such as Tridify [111], PiXYZ 

[112], and Unity Reflect [113] to expedite the process of 

importing BIM files into game engines like Unity. Another 

technique, highlighted by a Siemens patent [114], is the use 

of depth scanners for generating a point cloud illustration of 

a room and then matching the point cloud data with the 

corresponding objects. However, due to the immediate 
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lockdown and social distancing measures enforced in the 

wake of the Covid-19 pandemic, the above techniques were 

not feasible and could not be duly arranged. Hence, we 

manually modeled a part of the office workspace with the 

aid of an architectural drawing for our approach. We started 

with a meeting room that could accommodate a total of 12 

people and then continued to the encompassing areas. We 

used Probuilder [104] and ProGrids [115] for modeling and 

rapid prototyping. The 3D models for the workspace furniture 

were procured from the online market TurboSquid [116] and 

Sketchfab [117], and were placed in the environment 

accordingly. 

4.2 Realistic Rendering 

Through multiple photographs taken with standard digital 

cameras, we were able to ascertain the different materials 

that made up the meeting room, and we aimed to replicate 

these materials in the twin through Physically Based 

Rendering (PBR). PBR materials [38] enable physically 

simulating real-life materials’ properties such that they 

accurately reflect the flow of light and thereby achieve 

photorealism. A PBR material entails several parameters such 

as the albedo, metallic and smoothness properties, normal 

maps, height maps, diffuse map, occlusion maps, among 

others. The respective texture maps used in our twin for the 

walls and the floor mat were obtained from freepbr.com.  

Global Illumination (GI) is one of the most significant factors 

that decide how realistically a twin can resemble a real 

object. GI facilitates realistic light rendering by bouncing light 

off from surfaces, i.e., it accounts for indirect light in the 

scene. We employed Baked GI for our environment, which 

entails computing the lighting and generating lightmap 

textures beforehand and is therefore computationally 

inexpensive during runtime. Its counterpart, Realtime GI, 

involves calculating the light during runtime and places a 

substantial load on the GPU. Furthermore, Reflection Probes 

are placed in the environment to simulate reflections and 

strengthen the photorealism. Finally, Unity's Post-Processing 

tool is used to implement Anti-aliasing, Ambient Occlusion, 

Color-grading, and Auto-Exposure. The final intended result is 

shown in Figure 3. 

 

For smoother processing, we optimized the twin by deleting 

several unnecessary polygons, such as the height adjuster in 

the chairs and the trays underneath the desks. Low-poly 

humanoid models were placed in the environment to be 

recognized by the person detection model. Their behavior 

was driven by Unity's NavMeshAgents [69]. Agents avoid one 

other and other obstacles in a scene through spatial 

reasoning obtained from a baked NavMesh. We also 

enabled Ray traced rendering in the virtual environment by 

employing Unity’s path tracing algorithm. In this context, 

Physically Based Rendering is a category of virtual materials 

which mimic the real-world materials’ physical properties. We 

have compared the performance between Rasterized 

Rendering and Raytracing.   

4.3 Interactive Dashboards 

We configured interactive dashboards inside a VR based 

workspace simulator. They displayed real-time sensor data 

like temperature and humidity, the latest statistics about the 

Coronavirus pandemic at the place of deployment. Sensors 

were interfaced with the VR machine through their 

respective wireless module(s). These wireless modules used a 

peer-to-peer connection to communicate with a VR 

machine using UDP protocol at a frequency of 1 Hz. Data 

obtained from the temperature and humidity sensors are 

shown as a separate circular bar (Figure 4(c)). Instantaneous 

values were converted to time-series values when a user 

dwells using his/her eye gaze using an HTC Vive Pro Eye 

headset or when selecting the dial via a hand-controller, 

providing a detailed view (Figure 4(b)). The color of the 

circular bars changes if the value exceeds a pre-defined 

threshold (Figure 4(c)). Any abrupt change in the sensor 

readings was also reflected instantly via both visual and 

haptic feedback. Haptic feedback is generated through the 

hand controller. The live sensor data’s values could be used 

further for making decisions regarding air conditioning or 

maintaining a room temperature of the office workspace.  

 

 
(a) 

 
(b) 

Figure 3: The Digital Twin rendered with baked global illumination and post-processing using Unity. 
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In addition, the dashboard displays real-time statistics from 

the Coronavirus pandemic obtained from the Covid19-India 

API [https://api.covid19india.org/]. The dashboard shows the 

number of active cases for the region wherein the actual 

workspace is present. The data was shown as a circular bar 

(Figure 3(a)) depicting the number of active cases to date. 

When a user dwells using his/her eye gaze, detailed statistics 

were shown for the latest phase [54] as a bar graph (Figure 

4(b)).  

4.4 Connecting CNN to the VR Environment 

The physical implementation idea involves processing live 

video in a separate computer and sending the number of 

people detected in the live video feed into the VR setup. 

However, at the present stage of development, and given 

the previously mentioned constraints due to Covid-19, we 

connected the CNN model for detecting humanoids within 

the VR environment via a Real Time Streaming Protocol (RTSP) 

connection, streaming the Game View of the Unity camera 

to the CNN where the person detection process (as 

described in section 5.1) happens. Once the person 

detection results are obtained, we filter our predictions using 

their corresponding confidence scores. We select the 

persons with more than 0.6 confidence score, and if such 

person is found, we stream the results back to Unity through 

a UDP connection. Currently, there is no in-built option in Unity 

to stream its camera view; therefore, a custom solution has 

been compiled by us using the FFmpeg module and an RTSP 

Server. These functions have been implemented to stream 

the Unity view through the RTSP connection. Since the CNN 

processing speed would be different from Unity’s streaming 

speed, we considered the RTSP buffer’s latest sample to pass 

on to CNN. We tested person detection model on the videos 

recorded in both real and virtual worlds. The model processes 

each frame and localize persons/humanoids if detected in 

the frame (as shown in Figure 5). The localization is done by 

annotating bounding box around person. Figure 5 shows 

each person is annotated with one bounding box is labelled 

with number in the figure. 

Once Unity receives object results, we add or delete 

humanoids inside the virtual environment. Digital humanoid 

models are composed of more than 90 different links/joints 

and 140 degrees of like that used in many biomechanical 

models of the human body [118].  We used Mixamo’s [119] 

motion capture data to automatically rig the humanoid’s 

armature (base skeleton rig) so that it reflects realistic poses 

of a human. 

 
(a) 

 
(b) 

(c) 

Figure 4: VR Model of the Office Space. 

 

Figure 5: Humanoids are detected by person detection model and 
annotated with bounding boxes. Here bounding boxes are turned into red 

if social distancing is violated otherwise coloured in green. 

4.5 Comparison with Similar Approaches 

The ParallelEye dataset [40] took similar effort as ours on using 

VR based synthetic dataset for autonomous vehicles. 

UnrealROX [42] is another tool built over the Un-real engine to 

generate photorealistic synthetic datasets but targeted 

more towards robotic vision researchers. The tool focused on 

simulating a broad range of indoor robotic activities, in terms 

of both object interactions and pose. We extended the idea 

for a different use case and compared the system in terms of 

accuracy with real dataset. A different way of generating 

synthetic dataset uses Variable Auto Encoders (VAE) [120; 

121; 122] and Generative Adversial Networks (GANs) [123]. 

We also compared our approach with the same. We ran the 

real images through a GAN implementation. A GAN consists 

of a Generator, which tries to fool another network known as 
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Discriminator that learns to distinguish between real and fake 

images. We used one version of the GAN, called SinGAN 

[124], an unconditional generative model that can be 

trained on a single image [66]. The model learns the internal 

distribution of the image's patches [125; 126; 127; 128] using 

multi-scale adversarial training and can generate similar 

images of different scales. This model is like the GAN model, 

except the training samples are patches of the input image 

rather than a set of images, and the network consists of a 

pyramid [129; 130; 131] of GANs of different scales.  As the 

authors of the SinGAN paper claimed, it might produce 

unrealistic distorted results on coarser scales. Still, we were 

able to generate realistic fake images on finer scales that are 

indistinguishable from the real image. At finer scales, the 

Generator learns smaller patch distribution than at a coarser 

scale, giving better results in smaller scales and preserving the 

image's global structure (Figure 6).  

There is no existing VAE-based algorithm that takes a single 

image and can synthesize fake images as many numbers as 

we want. If we have enough dataset, VAE can capture the 

distribution and generate more data from the same 

distribution. Conventional GAN has problems of non-

convergence [132] and mode collapse [133], and 

researchers have improved it over time. Although, SinGAN 

model can synthesize more indistinguishable fake images 

similar to the original image as shown in figure 6, it offers less 

customization compared to VR based digital twin. As shown 

in earlier sections, in a digital twin, we can easily change 

number of persons, dress colours, number of persons, posture 

of persons in an image dataset keeping background and 

ambient light constant. Although it was found that a VAE can 

detect camera rotation and emotion of Frey face [134], but 

neither VAE nor GAN can add multiple objects and persons 

in an image by keeping a few features constant and varying 

others. 

5. Validation 

Validation of the entire system and in particular the social 

distancing module was challenging due to ongoing Covid 19 

restrictions. For example, it would be risky and unethical to 

request volunteers to stand or sit in close proximity for 

generating training or testing data in the middle of the 

pandemic. However, we would not also be able to validate 

the system properly if we only have data with limited 

participants standing and sitting far apart from themselves. 

Hence, we validated all models using both real and synthetic 

data. We collected real data after following social distancing 

norm and following appropriate ethical approval. We also 

generated synthetic data using the VR Digital Twin. For 

validation through VR generated synthetic data, we followed 

earlier examples of Parallel Eye Dataset [40] and Leban’s [33] 

robot workspace but used the previously proposed digital 

twin of laboratory space. In the following paragraphs, we 

described methods to generate both real and synthetic 

data. 

 

 
Figure 6: Left column: (a) Original input images (1st column); (b) Random 
samples from a single image at n=6 (2nd column), n=11 (3rd column), and 

n=25 (4th column). 

Real Data: We deployed a Logitech HD camera in a fixed 

position of the office and laboratory space to get similar view 

of the room as seen in the synthetic dataset preparation 

setup. To validate person detection model, we recorded 

short videos in the physical world (Figure 7(d)) and the virtual 

environment (Figure 7(c)). In physical world video, we 

recorded multiple situations such as occluding persons and 

varying lighting conditions at the same physical space used 

for VR modelling (Figure 7(c)). In the virtual environment 

video, we recorded keeping the ambient light and room 

setup as constant parameters and the following as 

independent parameters: (I) changing number of 

humanoids in frames (one to four humanoid), (II) posture of 

humanoids (seating and standing), (IV) occluding 

humanoids (yes or no). We also captured a live video with 

the same setup for a duration of 5 minutes for pose 

estimation. We randomly selected then 300 images 640 × 480 

pixels resolution from this video to test the model for pose 

classification. 

 

 
Figure 7: Left column: (a) Original input images (1st column); (b) Random 
samples from a single image at n=6 (2nd column), n=11 (3rd column), and 

n=25 (4th column). 

Synthetic Data: To ensure the digital twin was as photorealistic 

as feasible for data generation, we employed Unity's Ray 

tracing [72] tools, instead of the traditional Rasterized 

renderer. Ray tracing is a rendering technique that involves 

tracing individual rays of light as it bounces off virtual objects 

in the scene. Specifically, we used Unity's path tracing 

algorithm [71] with a sample count of 4096, i.e., the algorithm 

traces 4096 rays of light and requires 4096 frames to generate 

a single image. Hence, if the simulation runs at 30 frames per 

second, it will take around 2.3 minutes to generate one 

image. To automate the process and increase the dataset’s 
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diversity, we utilized Unity's perception package. We were 

able to generate high-fidelity ray traced synthetic datasets 

of humanoids in a sitting or standing pose through the 

perception package and its in-built randomizer. By exploiting 

this randomizer, the humanoids pose, i.e., the position and 

orientation, were changed according to a random seed with 

each iteration. By randomizing their pose on a fixed z-axis, we 

were also able to ensure that the humanoids did not clash 

with one another. We placed humanoid figures in close 

proximity in synthetic data. 

5.1 Person Detection 

We tested our trained model on both real and synthetic 

sequences of images.  We calculated the accuracy of our 

model using the formula:  Accuracy = 

(TP+TN)/(TP+FP+FN+TN), where TP, TN, FP, and FN stand for 

True Positive, True Negative, False Positive, and False 

Negative, respectively.  

 

Office space: We tested a total of 9000 images divided into 

three classes – real, synthetic images generated without ray 

tracing and synthetic images generated through ray tracing. 

We considered synthetic images without ray tracing as ray 

tracing is computationally intensive and in practical 

implementation, we may need to deploy the digital twin 

without ray tracing based on availability of GPUs. We found 

an overall accuracy of 96.044% (std error 0.07) for real 

images, 96.981% (std error 0.126) for synthetic images without 

using raytracing and 94.25% (std error 0.09) with synthetic 

images using ray tracing (Figure 8(b)). We analyzed 

accuracies to determine if the performance of CNN is 

significantly different between real and synthetic images. We 

listed accuracies for all conditions (different number of 

persons, posture, and occlusion) separately and found that 

except when one person is occluded, the interquartile range 

for all conditions to be zero and median, first and third 

quartile is 100% for both real and synthetic images  

 

Laboratory space: We tested total of 9600 images divided 

into two classes – real and synthetic to compare 

performance of the model. We found an overall accuracy of 

91% (std error 0.11) for real images and 94% (std error 0.04) for 

synthetic images (Figure 8(b)). We also observed overall 

latency of 14.25 frames/second and 14.17 frames/second for 

real images and synthetic images, respectively. We 

measured accuracy for all 16 combinations (Postures (2) × 

Occlusion (2) × Number of Persons (4)) and found lowest 

accuracy when one person was occluded in real image. In 

all other conditions, we found accuracy was higher than 80%. 

We undertook non-parametric statistical hypothesis testing to 

compare accuracy and latency between real and synthetic 

images. Using Wilcoxon Signed-Rank test, we did not find any 

significant difference neither in accuracy nor in latency at 

p<0.01.   

• We observed few cases (for e.g., one person sitting with 

occlusion) where accuracy on real images were 

comparatively lower than synthetic images. It might be 

due to uncontrolled lighting illumination, similar color 

contrast between dresses of persons and background 

and so on.  

• The difference in accuracy among two conditions were 

3%, which means in practical cases we will not miss a 

person. 

5.2 Pose Estimation 

We tested the model performance on both synthetic and 

real data as explained in section 3 and real data. We 

obtained 17 key points of the human body as output from the 

model. We calculated distance vectors from left hip to left 

shoulder and to left knee. By using the dot product formula 

between these two vectors, we obtained left hip's interior 

angle. We set the threshold for hip's interior angle to be 160 

degree and we concluded if the angle was more than the 

threshold value for a posture, we labelled as 'standing', else 

labelled as 'sitting'. We found accuracy of 83.82% and 84.73% 

for real data and synthetic data respectively. 

5.3 Social Distancing 

We fixed a camera at a particular height of the room in real 

world. We then collected distances between persons in 

different position of the room and that is also with different 

distances. To fix the distances between persons, we used 

distance of 2ft, 4ft, 6ft, and 8ft and put markers on the floors. 

We then asked our lab colleagues to stand on those markers 

and captured images (Figure 9). We measured correlation of 

actual Euclidian distance among people in real workspace 

with the virtual distance measured from the VE, and the 

correlation coefficient was found to be 𝑟 = 0.82, 𝑝 < 0.01, 𝑅2 =

0.67. Figure 10 shows the scatter plot explaining correlation 

between real world and pixel wise distances. In this context, 

we measured correlation of this measurement with the 

distance measured through the virtual environment in office 

space and the correlation coefficient was r=0.99, p<0.01. 
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(a) 

 
(b) 

Figure 8: Comparing Accuracy of Person Detection on Real and Synthetic Data in both office and laboratory space. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 9: Sample images for measuring social distances between two persons in different position of the room. (a) and (b) are showing persons are 
standing in 4ft and (c) and (d) are showing persons standing in distance of 8ft. 
 
 

 
(a) 

 
(b) 

Figure 10: Scatter Plot between Distances measured from Real World environment and using person detection model. (a) Office space; (b) Laboratory 
space.

5.4 Discussion 

We compared performance of a representative CNN model 

among real and synthetically generated images using a VR 

digital twin of office space and laboratory space.  

Office space: We noted that the interquartile range of 

accuracies across different combinations of number of 

persons, occlusion and posture is zero with first, second and 

third quartile is at 100%. The highest number of images with 

less than 100% accuracy occurred when one or more persons 

are occluded, and it was similar for both real and synthetic 

images. We observed few cases (for e.g., two persons sitting 

with occlusion) where accuracy on real images were 

comparatively lower than synthetic images. It might be due 

to uncontrolled lighting illumination, similar color contrast 

between dresses of persons and background and so on. The 

difference in accuracies among three conditions were less 

than 2%, which will not have much effect for practical use 

cases. The calculated distances from synthetic image 

correlated with 0.99 coefficient with real distances. 

We found three conditions (two persons sitting with occlusion, 

three persons standing without occlusion, three persons 

sitting with and without occlusion) where accuracy on real 

images were comparatively less than on synthetic images 

without ray tracing. We observed that, although model was 

able to detect persons in those conditions in real world, false 

positive rate was higher. It might happen due to uncontrolled 

ambient lighting conditions in real world, indistinguishable 

similarity between dress colors and background in the 

images. 

Laboratory Space: We did not observe reduction in accuracy 

of the model with increasing the number of persons. The 

lowest accuracy (83.34%) was found with the combination of 

three persons in sitting postures and occluded. We also 

observed that with four persons in all combinations, accuracy 

was above 94%. A video demonstration of the complete 

system can be found at https://youtu.be/4D2iGaDrP2c. 

https://youtu.be/4D2iGaDrP2c
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6. Applications 

In this section, we described two possible applications of the 

system beyond remote monitoring of laboratory space. The 

first case study extended the social distancing measure to 

estimate maximum occupancy of a room maintaining social 

distance. The second case study presents a validation of the 

concept for developing digital twin of an Indian road.  

6.1 Maximum Occupancy of a Room 

In the previous section, we reported that we were able to 

measure social distancing by computing the inter-person 

distances in the virtual world and our analysis showed a high 

correlation with the ground truth obtained from the real data. 

We extend the work to estimate the maximum number of 

occupants in a closed space maintaining social distancing. 

To determine the maximum occupancy, we approached 

the problem through a circle packing technique [77], which 

can be defined as the arrangement of circles inside a given 

boundary such that no two circles overlap, and some (or all) 

of them are mutually tangential. In our case, individuals were 

represented as the center of a circle of radius 3ft. If two 

individuals were to maintain a distance of more than 6ft from 

each other, then the distance between their circle centers 

would be greater than or equal to twice their radius.  

It should be noted that while the circle packing technique 

requires the circles to be within the bounds of the space, in 

our case only their centers are required to do so. For instance, 

people could be stationed at the corner of a room or leaning 

against a wall in a meeting room, in which case their circle 

bounds will overlap with the room boundary. However, their 

centers would be within the bounds of the room. We termed 

the region where the people can be stationed as the feasible 

region. The feasible region excludes the obstacles in a space, 

forming an irregular concave polygon. Hence, defining the 

feasible region is crucial for the proposed algorithm. To define 

the feasible region in the twin, we employed Unity's NavMesh 

feature. A Navigation mesh in Unity is an abstract data 

structure used to aid Non-Playable Characters (NPCs) or 

Artificial Intelligence agents in pathfinding through 

complicated spaces [69, 78]. Constructing a Navigation 

mesh involves first defining the surfaces where NPCs would be 

able to walk. We did this by assigning the furniture, pillars, and 

other obstacles in the room as NavMesh obstacles. Unity 

generates a custom polygon that curves around the 

obstacles defined earlier after mesh building, resulting in the 

feasible region, as depicted in Figure 11(a). The distance 

maintained by the NavMesh from the obstacles can be 

controlled by adjusting the Humanoid settings of the 

NavMesh, specifically by increasing or reducing the 

humanoid's radius. A larger radius leads to a more spaced 

distance from the obstacles and vice versa. 

 

Packing Process: We adopted and modified the layout 

strategy from Yuan et al. [83], since we found it to be 

adequate considering our specific use-case of packing 

circles in irregular shapes. Yuan’s algorithm implemented a 

left bottom placement strategy, namely placing circles in the 

left-most and bottom-most position first and growing from 

there.  

 

Our algorithm was integrated into the Unity game engine 

and exploited its physics simulation capabilities. We utilized a 

ray casting approach to counter the problem of assessing 

whether a circle’s center is within the feasible region. In 

computer graphics, ray casting involves shooting an 

imaginary straight ray from a point to ascertain which objects 

it collides with along its path. The circle's center was 

designated as the point of origin for our ray, the direction 

being downwards, and its parameters were set such that it 

travelled one meter. We then checked to see if the ray 

collided with the feasible region; if it did, the circle was 

deemed valid. To ensure the circles did not overlap, we 

assigned a collision detection protocol. The protocol states 

that if a circle collides with any other already packed circle 

upon instantiation, it is not deemed valid. We employed an 

imaginary sphere collider around every circle. If another 

circle were to overlap, then their sphere colliders would throw 

a trigger event, stating that a collision has occurred. Thereby 

every circle undergoes a two-step check before they are 

deemed valid to be packed. Furthermore, due to the 

polygon's irregular nature, we employed 128 discrete points 

for our layout circle [83]. 

 

Jump-Off Circles: Due to the irregular structure of the feasible 

region, the algorithm may face a dead-end, i.e., it reaches a 

point where it has no way of moving forward, while a large 

portion of the feasible region remains unpacked. We 

implemented 'jump-off circles', which are randomized circles 

where the algorithm can jump to and resume packing when 

it faces a dead-end. While packing, the algorithm is designed 

to choose the first out of sixteen circles (in the 

counterclockwise direction) that meets the previous two 

criteria. After finding this circle, it also examines the remaining 

circles as to whether they satisfy the two criteria. If they do, 

the algorithm designates those circles as 'jump-off points' and 

stores them in a list data structure. The central circle from 

which they originated is designated as the 'jump-off circle'. 

The 'jump-off circle' and the list of 'jump-off points' are stored 

as key-value pairs in an ordered dictionary. If later, these 

'jump-off points' are found to be overlapping with other 

packed circles, they are deemed invalid and removed from 

the dictionary. 

Consequently, when the algorithm reaches a dead-end, it 

jumps to a jump-off circle, picks the earliest jump-off point in 

the clockwise direction, and resumes packing. If no jump-off 
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circles exist, the algorithm assumes no space is left to pack 

and ceases the packing process. Figure 11(b) shows the result 

of the packing process after implementing jump-off points, 

and the pseudocode for the algorithm is outlined below. 

ALGORITHM 1: Estimating Maximum Space Occupancy 

Input: left-most position on the feasible region to start the packing 
process from 

Output: packing structure 

function PACKINGPROCESS (position) 

 create a packed circle with centre position 

 create a layout circle with centre position 

 for every discrete point on the layout circle with position i, 
do 

  create a circle with centre i 

  if circle is inside the feasible region then 

   if circle does not overlap other packed 
circles then 

    position = circle’s centre 

    flag = 0 

    if circle has jump-off points 
then 

     store jump-off points 
in a dictionary, and designate circle as jump-off circle 

  else 

   flag = 1 

 if flag = 0 then 

  return PACKINGPROCESS (position) 

 else if flag = 1 and jump-off circles exist then 

  position = jump-off point 

 else if flag = 1 and no jump-off circles exist then 

  return      

end 

 

 

Figure 11: (a) The feasible region (in blue) extracted from Unity's 

NavMesh, and which conveniently ignores the obstacles in the room. (b) 

The result of the packing process on the feasible region. The algorithm 

was able to pack 21 circles. 

 

Figure 12: A parallel coordinate plot depicting the comparison of our 

algorithm’s packing w.r.t. different discrete points. 

 

Validation: Since our algorithm allows circles to cross the 

packing polygon’s boundary, the traditional packing 

efficiency calculation of dividing the total area of the 

polygon by the total area of the packed circles could not be 

used. Hence, we compute the pixel count in a top view 

image of the feasible region before packing (marked in blue 

in figure 11) and compared it with the pixel count of packed 

circles after packing. In Figure 11(b), where the circle radius 

was 3 ft, the blue pixels covered, or the packing efficiency 

was found to be 89.2%. Due to our unique circumstance, we 

do not have a ground truth metric to compare this packing 

efficiency. However, there exists optimal packing structures 

for packing n circles in a unit square, where n ranges from 

one to twenty [77]. We compare this optimal packing to our 

algorithms' performance of packing n circles ranging from 

one to ten and reported the absolute differences in Table 1. 

The absolute differences between our algorithm and the 

optimal packing were found to be at most two circles. We 

further analysed our algorithms' ability to pack circles by 

increasing the number of discrete points and reported results 

in Figure 12. It was found that upon increasing the discrete 

points, our algorithm was able to more closely resemble the 

optimal packing (256 discrete points was able to pack 9 

circles for the optimal packing of 10), at the expense of more 

computation power. It should be noted that this algorithm 

serves only to estimate the maximum occupancy limit of a 

space, similar to the occupancy limits of an elevator, and 

does not serve as a definite tool to support public health 

decisions. 

Table 1: Comparison of our algorithm’s packing to the proved optimal 

packing of n circles in a unit square 

Diameter of 

Circle 

Optimal 

Packing 

Our Algorithm Packed 

(16 Discrete Points) 

Absolute 

Difference 

1.000 1 1 0 

0.586 2 2 0 

0.509 3 2 1 

0.500 4 4 0 

0.414 5 4 1 

0.375 6 4 2 

0.349 7 6 1 

0.341 8 6 2 

0.333 9 8 1 

0.296 10 8 2 
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6.2 Digital Twin of an Indian Road 

The concept of using digital twin to generate customized 

synthetic data can also be explored for developing (semi)-

autonomous vehicles. Presently, there are limited data 

available for developing computer vision models for 

detecting non-conventional traffic participants. It is also 

difficult to generate real dataset for certain types of road 

objects like children or animals. We developed a digital twin 

of an Indian road. Our approach was similar to the Parallel 

Eye Dataset [40] but was richer in terms of developing VR 

models of non-conventional traffic participants like animals, 

three wheelers and so on. We compared performance of 

YOLOv3 for detecting unusual traffic participants for both real 

and synthetic datasets. We modelled an Indian road in Unity, 

comprising of diverse types of vehicles and stray animals. We 

employed the terrain package to create an artificial 

environment, and we placed several three-dimensional 

models of animals and Indian vehicles arbitrarily to reflect a 

real-world scenario. The synthetic dataset was generated 

from the perspective of a person in a driver's seat of a car. 

We compared performance of YOLOv3 on both real 

(obtained from an Indian road dataset [88]) and synthetic 

images. We found that the pattern in average detection rate 

for different classes (for instance, the detection rate for car is 

the highest for both datasets) are similar across real and 

synthetic data (Figure 13). 

 

 

Figure 13: Performance comparison of YOLOv3 in both virtual and real 

environment in the context of an Indian road scenario.  

7. Explanation through visualization 

In the previous section, we reported that YOLO had its lowest 

accuracy where one or more persons were partially 

occluded. To understand this result, we used an intermediate 

layer visualization technique and the Grad-CAM technique 

to explain the person detection model's performance. Grad-

CAM calculates each pixel value of the feature maps in the 

last convolution layer on the predicted class [107]. It does not 

need any information related to bounding box regression, 

which is typically used to localize an object in the image. As 

the YOLO model does not allow reading data from 

intermittent layers, we used a VGG16 classification model 

pretrained with the ILSVRC ImageNet dataset. We prepared 

our dataset combining five different classes (i.e., airplane, 

bicycle, car, motorbike, and face) of images downloaded 

from Kaggle, Google Image, the Caltech face image 

dataset, and the Georgia Tech Face database. We trained 

the model with a total of 3513 images parted in training and 

validation datasets (80:20) for 100 epochs. To understand 

how the CNN model can classify the input image, we need 

to understand how our model sees the input image by 

looking at the output of its intermediate layers. We visualized 

activations in the (n/4)-th convolutional layer, (n/2)-th 

convolutional layer, (3n/4)-th convolutional layer, and the n-

th convolutional layer of the trained model. To visualize the 

heatmap generated by the Grad-CAM method, we used a 

pretrained VGG16 model. Although this pretrained model 

does not include any person class, it has different classes 

related to dresses (e.g., ‘t-shirt’, ‘jeans’), which are relevant 

for the localization of the individual in the image. We 

generated a heatmap corresponding to the ‘t-shirt’ and 

‘jeans’ classes to identify people in the images.  We visualized 

the performance of the CNN on person prediction in both 

real and synthetic generated images. We generated the 

output of CNN from the layers mentioned above for both 

types of images to understand whether CNN handles 

synthetic generated and real images differently or in the 

same manner. We found that the first few convolution layers 

of the model extracted basic features (edges, contours) of 

the object and retained maximum information from the input 

image (Figure 14(b), 15(b)). As we found deeper in the 

model, activations became less visually interpretable (Figure 

14(c) – 14(e), 15(c) – 15(e)). The model started to extract 

abstract features (e.g., patch-based features like the texture 

of body parts of a humanoid in Figure 14 or a person in Figure 

15). In the deeper level of the network resolution, the feature 

map starts decreasing, but spatial information increases. If 

we observe all four-feature map outputs (Figure 14(c) – 14(e) 

and 15(c) – 15(e)), it is evident that in each transformation 

model it eliminated the background or any irrelevant 

information and refined useful information related to class of 

objects. 

We also visualized heatmaps of class activation to 

understand which part of the object was responsible for 

letting the model classify correctly. In this context, the class 

activation map tells us which part of an image corresponds 

to a class of objects. In Figure 16, we showed a heatmap on 

real-world images synthetically generated images (Figure 

16(a) – (c)). We found that different body areas were strongly 

activated, where brown color corresponded to the highest 

gradient score, and cyan color corresponded to the lowest 

gradient score. Heatmap based visualization helped us 

identifying which part of the image contributes to the case 

of false positive or false negative results. 
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Figure 14 (a) Input image (humanoids in a synthetic generated image). A 

red box indicates that YOLO detected a person; (b) 28th channel of the 

activation of 3rd convolution layer; (c) 28th channel of the activation of 7th 

convolution layer; (d) 28th channel of the activation of the 10th convolution 

layer; (e) 510th channel of the activation of the 13th convolution layer. 

(Please note that this figure is best viewed in electronic form). 

 

 

Figure 15 (a) Input test image (person in real-world image); (b) 28th channel 

of the activation of 3rd convolution layer; (c) 28th channel of the activation 

of 7th convolution layer; (d) 28th channel of the activation of the 10th 

convolution layer; (e) 510th channel of the activation of the 13th convolution 

layer. (Please note that this figure is best viewed in electronic form). 

 

 

Figure 16 Grad-CAM based heatmap for three different situations where 

YOLOv3’s performance was different in terms of accuracy (shown in red 

bounding boxes). (a) YOLOv3 failed to detect a partially occluded person; 

(b) YOLO detected all individuals; (c) YOLOv3 detected all individuals with 

different postures and dressing different colors. 

 

To understand how different independent variables 

contributed to CNN’s performance, we tested on synthetic 

images with different parameters. We started with an 

occluded person’s image where the YOLOv3 failed to detect 

individuals, and the accuracy dropped to 50% (Figure 17(a)). 

We found that occlusion made it difficult for the model to get 

enough information from the partially occluded person to 

localize it, although it could generate a heatmap for whole 

body areas of a standing person as it was fully visible (Figure 

17(a)). We did a second check with a different image in 

which YOLOv3 was able to detect all the people (Figure 

17(b)). When we looked closely at the heatmap areas, we 

found strong associativity between the bounding box region 

and the heatmap areas. Although the female humanoid in 

this image was weakly classified, the heatmap covered the 

maximum upper body parts visible in the image for all three 

individuals. As previously mentioned, the brown color 

corresponded to the highest gradient score, and the cyan 

color corresponded to the lowest gradient score. We tested 

the heatmap with a third image where the humanoid figures 

were wearing different colors (green and white) and were 

positioned in different postures (i.e., one person was sitting, 

and a second person was standing). The Grad-CAM 

heatmap gave a strong visual cue about the location of 

these two different individuals (Figure 16(c)). These results 

confirm our idea of using this visualization technique to 

analyze failure modes of a CNN model and take corrective 

steps, such as increasing the camera field of view and 

location to record a full-frontal view of the humanoids, in this 

case, to increase the accuracy of the model. 

8. General discussion 

This section summarizes our work and identifies its novelty and 

utilities. 

8.1 Summary 

This work proposes a new way of validating the accuracy of 

CNNs through synthetic customized video generated in an 

immersive environment. A case study demonstrates this 

implementation’s possible application towards the 

development of an automated social distance 

measurement system in a physical office and laboratory 

space. We have presented training and testing accuracy of 

detecting individuals using  CNN based person detection 

model and used data visualization techniques to explain the 

working of the model for both real-world and synthetically 

generated video.   

8.2 Accuracy of Person Detection 

We noted that we achieved 100% median accuracy for 

person detection and 0.99 correlation on physical distance 

measurement. CNN is a rapidly evolving field with new 

models are frequently appearing in literature and the 

accuracy of person detection even with occlusion can 

further be increased using customized CNN models. 

However, it may be noted that this paper is not focused on 

developing CNN for person detection, rather proposing a 

new way of validating CNN model using VR based synthetic 

dataset. If a different CNN model is used other than YOLOv3, 

we can also train it with synthetic dataset and can achieve 

similar accuracy in real life deployment. The present social 

distance measurement algorithm works within the visual field 

of a webcam inside a room, but future version will implement 
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3D distance measurement like Bertoni’s [40] Monocular 3D 

Localization algorithm. 

8.3 Utility 

The proposed VR prototype will be deployed as a VR based 

digital twin of an office space implementing real-time person 

detection and environmental variable monitoring 

capabilities through interactive dashboards. In addition, the 

VR interface would show real time Covid-19 statistics at the 

place of deployment and measure the number of people in 

the space, and their relative position and posture. This can be 

very valuable to monitor social distancing measures in office 

spaces. A second benefit could be that an observer can 

undertake a detailed remote virtual walk through the office 

space, which would not be possible with a standard multi-

screen video from security cameras. 

The concept of validating a CNN through synthetic video 

can have utilities beyond these particular use cases of 

measuring social distancing at an office space or laboratory 

space. For example, for both unmanned ground and aerial 

vehicles, synthetic videos can be used to validate machine 

vision systems where real-time video generation is difficult, for 

example, inside a hazardous place such as a nuclear power 

station or a high-security zone such as inside of a military 

facility.  

8.4 Value Addition 

• During the past few months, a plethora of computer 

vision projects on calculating social distancing was 

produced. However, most of these systems were not as 

rigorously validated as traditional machine vision 

systems for autonomous vehicles or face recognition 

due to a lack of appropriate data. Bertoni’s [40] 

algorithm was validated for outdoor environment but 

not for indoor office workspace. Our paper proposes a 

new way of validating a machine learning-based 

person detection system using synthetically generated 

video in an immersive environment. 

• Digital twins are traditionally used to optimize or simulate 

the process life cycle or maintenance of assets. Our 

work proposes a new use of digital twins for enhancing 

workplace safety by measuring social distance. 

• We also showed one application of the visualization 

technique in synthetic images to understand why CNN-

based object detection models worked or failed to 

detect individuals from the images. We compared the 

performance of YOLO using different independent 

parameters to understand how it works in different 

situations. The heatmap based visualization helped us to 

get a visual explanation about the working of the CNN 

model. This approach is novel in that a similar approach 

can be used for other CNN models for different 

applications, and it is a step further towards the 

collective goal of explainable AI (XAI). 

9. Conclusion 

This work presented a VR based digital twin implementation 

of a physical office and laboratory space towards the goal 

of using it as an automatic social distancing measurement 

system. The VR environment was enhanced with an 

interactive dashboard showing information collected from 

physical sensors and the latest statistics on Covid-19. We 

presented a person-detection method and a pose-

estimation model to determine the number of people in a 

room, their respective poses and mapped them in a virtual 

environment for measuring social distance. Our proposed 

pipeline along with the Digital Twin of the shared space 

visualizes both environmental and human behavior aspects 

preserving privacy of individuals and improves latency of 

such monitoring systems as it does not require to stream live 

video. We intend to extend our human pose dataset with 

wide range of poses with multi-person occluded setting. We 

also presented a circle-packing algorithm which can be 

implemented using Unity to obtain the optimal number of 

people that can be accommodated in any given space 

maintaining social distance and proposed to use VR 

generated synthetic data for training and testing computer 

vision models. We also used two different data visualization 

techniques to explain how a complex CNN works, therefore 

looking towards the advancement of explainable AI, and we 

used it to improve the performance of the CNN. Our hope is 

that the proposed solution will help measure occupancy 

accurately and contribute to enhancing the safety of 

workspaces by enforcing social distancing measures. 
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