

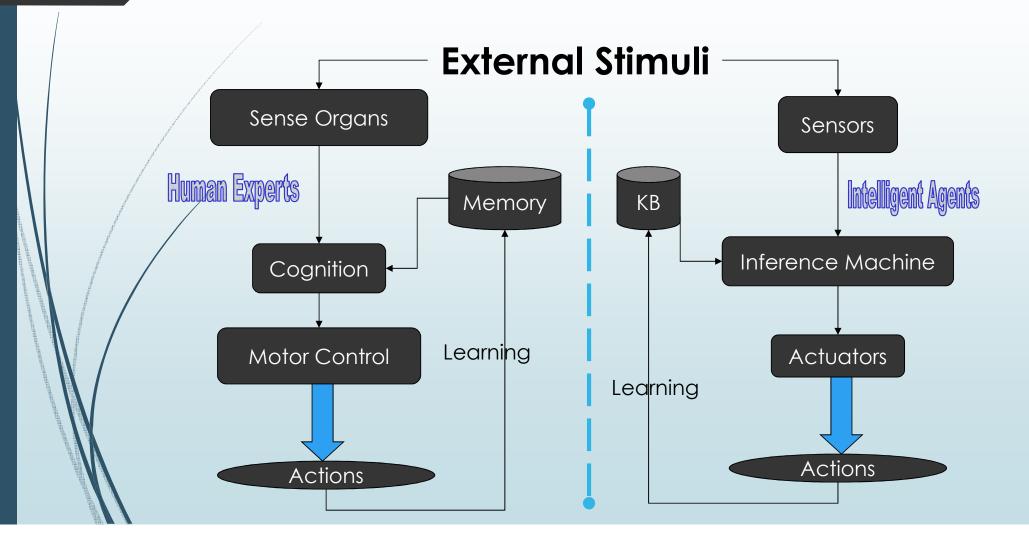
# Introduction to Expert System

Dr Pradipta Biswas, PhD (Cantab) Assistant Professor Indian Institute of Science http://cambum.net/

#### Contents

- Reasoning
- Historical Systems
  - Dendral
  - Eliza
  - Mycin
- Rule Based System
  - Components
  - Forward & Backward Chaining
  - SOAR Cognitive Architecture
- CLIPS Demonstration
- Case Based Reasoning
  - Components
  - Examples
  - Comparison with Rule Based System

#### Expert & Knowledge-Based Systems


#### Large-scale problem solving systems

- Originally called expert systems, they would mimic the problem solving processes of domain experts
- Expert systems were originally developed by hand and most commonly in Lisp
- It was discovered that many problems were being solved by chaining through rules (if-then statements) that would operate on a collection of facts and partial conclusions
- These rule-based systems led to the first AI tools or shells
  - Today, to simplify expert system creation, most people use these AI shells – you just fill in the knowledge, the problem solving processes are already implemented

### What is Reasoning

- Reasoning is the act of using reason to derive a conclusion from certain premises. There are two main methods to reach a conclusion.
- Intelligent: endowed with the capacity to reason

#### **The Process of Reasoning**



#### **Reasoning Techniques**

- Analogical Reasoning
- Deductive Reasoning
- Inductive Reasoning
- Formal Reasoning
- Procedural Reasoning....

#### Reasoning Techniques

- Formal Logic
- Rule based System
- Case Based Reasoning
- Frame based System

Trade-off :

7

Expressiveness vs. Efficiency of Reasoning

## Historical Systems

#### Dendral

- The Dendral system (DENDRitic ALgorithm) was the first expert system, developed in the 1960s
  - Determines chemical composition from mass spectrogram data
- The approach: plan-generate-and-test with human feedback
- This is a constrained search technique
  - Generate a hypothesis: a possible chemical compound
  - Test the hypothesis: use a series of heuristics and subprograms to determine if the chemical compound generated is plausible given the data
  - If so, show it to the user the user can steer the direction that DENDRAL takes next by suggesting what chemical elements should be added or removed from the generated hypothesis compound
  - DENDRAL repeats until an answer is found acceptable that does not violate the constraints as dictated by the data

#### Eliza

- Created by Joseph Weizenbaum at MIT
- Weizenbaum wrote the program so that it would generate an English response/question based on a group of patterns
  - The most famous script, DOCTOR, simulated a Rogerian psychotherapist (in particular, Carl Rogers, who was wellknown for simply parroting back at patients what they had just said), and used rules, dictated in the script, to respond with non-directional questions to user inputs.
- As such, ELIZA was one of the first chatterbots and one of the first programs capable of attempting the Turing test.

- Sample dialog:
  - H: Men are all alike
  - E: In what way?
  - H: They're always bugging us about something or another.
  - E: Can you be more specific?
  - H: Well, my boyfriend made me come here.
  - E: Your boyfriend made you come here?
  - H: He says I'm depressed much of the time.
  - E: I am sorry to hear you are depressed.
  - ► H: It's true. I am unhappy.
  - E: Do you think coming here will help you not to be unhappy?
  - H: I need some help, that much seems certain.
  - E: What would it mean to you if you got some help?
  - H: Perhaps I could learn to get along with my mother.
  - E: Tell me more about your family

#### MYCIN

- Implemented in the early 1970s, Mycin is perhaps the most recognized and cited expert system
- MYCIN was developed over five or six years in the early 1970s at <u>Stanford University</u>. It was written in <u>Lisp</u> as the doctoral dissertation of <u>Edward Shortliffe</u> under the direction of Bruce G. Buchanan, <u>Stanley N. Cohen</u> and others.
- MYCIN operated using a fairly simple inference engine and a knowledge base of ~600 rules.
- MYCIN received an acceptability rating of 65% on treatment plan from a panel of eight independent specialists
- MYCIN was never actually used in practice

## Rule Based System

#### Rule Based Systems

Rule looks like

■ If

■Cond1

■Cond2

••••

Then

■Then1

Then2

(rule (if has-sauce is yes and sauce is sweet) (then best-sweetness is sweet with certainty 90 and best-sweetness is medium with certainty 40))

(rule (if preferred-sweetness is dry)
 (then best-sweetness is dry with certainty 40))

(rule (if preferred-sweetness is medium)
 (then best-sweetness is medium with certainty 40))

(rule (if preferred-sweetness is sweet)
 (then best-sweetness is sweet with certainty 40))

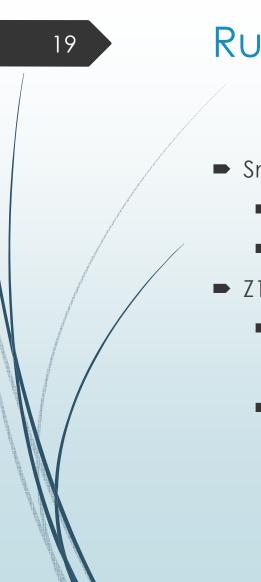
#### Vocabulary/Terminology

- Assertion: A statement about a fact
- If-patterns match assertions in a collection of assertions called a
- Working Memory
- Deduction system: then-patterns specify assertions to be placed in working memory
- Reaction systems: then-patterns specify actions

#### Vocabulary/Terminology

- In deduction systems
  - Antecedent: if-pattern
  - Consequent: then-pattern
- Forward chaining: process of moving from ifpatterns to then-patterns, using the if-pattern to identify appropriate situations for the deduction of a new assertion or the performance of an action

#### **Deduction Systems**


- Satisfying an assertion: When an if-pattern matches an assertion
- Rule Triggering: When all if-patterns of a rule are satisfied
- Rule Firing: When a triggered rule establishes a new assertion or performs an action

#### Zookeeper

- Identifies animals in a small zoo
- Robbie the robot can perceive
  - ■Color, size, hair, gives milk, ...
- Can tell that an object is an animal, but cannot tell what animal it is
- Would be nice to write Robbie an animal identification system

#### Zookeeper Designs

- One if-then rule for each animal in the zoo
- If-then rules produce intermediate assertions
  - Only a few antecedents each. Easier
  - Forward chaining through intermediate assertions to identity of animal



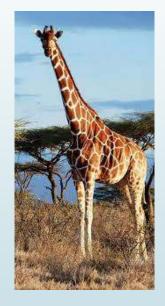
#### Rules

- Small zoo
  - Tiger, cheetah, giraffe, zebra, ostrich, penguin, albatross
  - Zookeeper is simpler
- ► Z1:
  - ► If
    - ■?x has hair
  - Then
    - ■?x is a mammal

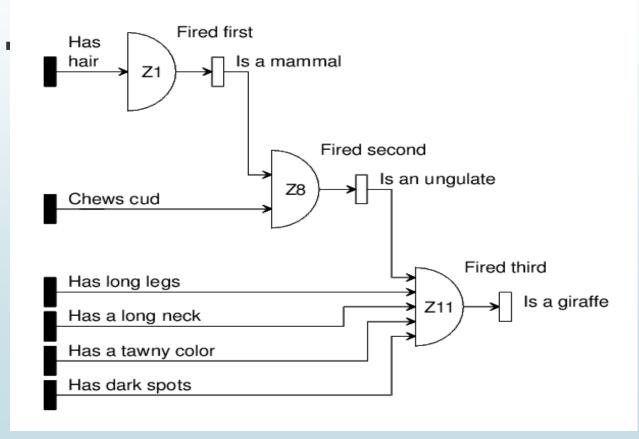
#### Variables and Bindings

- Antecedents and consequents contain variables (?x)
- Variables acquire values during the matching process
- Assertion in WM: Animal1 has hair
- ?x has hair matches when ?x becomes Animal1
  - Animal1 has hair
  - ■?x has hair
- ?x is bound to Animal1 or
- Animal1's is ?x's binding

### Bindings


- Once a variable is bound, that variable is replaced by its binding wherever it appears in the same or subsequently processed patterns
- Whenever the variables in a pattern are replaced by their bindings, the pattern is said to be instantiated

#### Instantiation


- Animal1 has hair
- ■If ?x has hair
- then ?x is-a mammal
- ?x bound to Animal1, then instantiated rule is
- If Animal1 has hair
- Then Animal1 is-a mammal

#### Working Memory

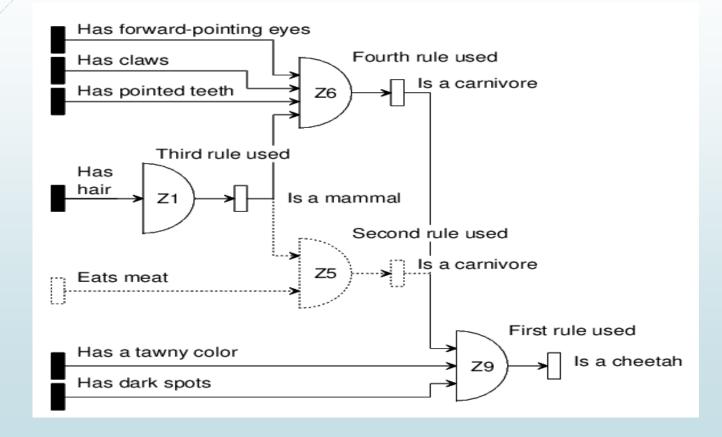
- Animal1 has hair
- Animal1 chews cud
- Animal1 has long legs
- Animal1 has tawny color
- Animal1 has dark spots
- Animal1 has a long neck



#### Rule Firing Sequence



#### Forward Chaining


- Until no rule produces an assertion or the animal is identified
  - For each rule
    - Try to support each of the rule's antecedents by matching it to known assertions
    - If all the rule's antecedents are supported, assert the consequent unless there is an identical assertion already
    - Repeat for all matching and instantiation alternatives

#### Backward Chaining

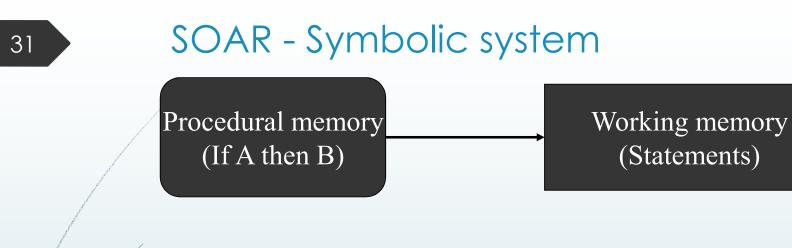
- Form a hypothesis rule consequent
- Work to find supporting assertions in rule antecedents
  - Animal2 has tawny color
  - Animal2 has dark spots
  - Animal2 has hair
  - Animal2 has forward pointing eyes
  - Animal2 has claws
  - Animal2 has teeth



#### Rule Chaining Backward

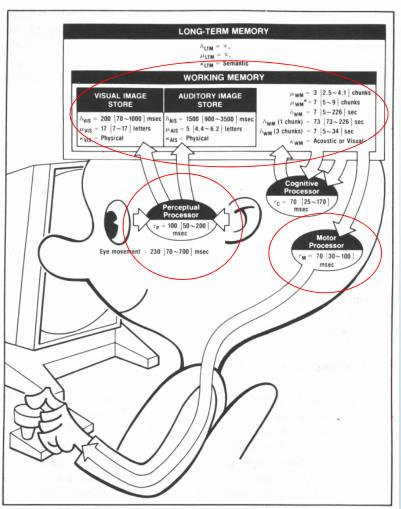


#### Backward chaining code


- Until all hypothesis have been tried and none have been supported or until the animal has been identified
  - For each hypothesis
    - For each rule whose consequent matches the current hypothesis
      - Try to support each of the rule's antecedents by matching it to assertions in WM or by backward chaining through another rule, creating new hypotheses. Be sure to check all matching and instantiating alternatives
      - If all the rule's antecedents are supported, announce success and conclude that the hypothesis is true

#### Forward or backward

- Depends on the problem!
- Fan-out versus Fan-in
- If the facts can lead to a large number of conclusions, but the number of ways to reach the particular conclusion we are interested in is small, then there is more fan-out than fan-in. Use backward chaining
- If the number of ways of reaching the particular conclusion in which you are interested is large, but the number of conclusions you are likely to reach using the assertions is small, you have more fan-in. Use forward chaining


#### Forward or Backward

- If fan-in an fan-out are about the same
- If you have not yet gathered any facts, and if you are only interested in whether one of many possible conclusions is true, use backward chaining
- If you are only interested in whether an animal is a carnivore, only look at antecedents of carnivore rule to focus fact finding
- If you have all the facts that you will ever get, and are interested in everything that you can conclude from those facts, use Forward chaining
- If you catch a fleeting glimpse of an animal, gathered a set of facts. No more facts possible because animal is gone: Forward chain



- State space model  $\rightarrow$  Memory and problem definition
- Impasse  $\rightarrow$  Can't find a rule, decompose goal to sub-goals
- Chunking  $\rightarrow$  Learning new situation

#### Model Human Processor



- (rule (if has-sauce is yes and sauce is spicy) (then best-body is full))
- (rule (if tastiness is delicate)
   (then best-body is light))
- (rule (if tastiness is average)
  (then best-body is light with certainty 30 and
   best-body is medium with certainty 60 and
   best-body is full with certainty 30))
- (rule (if tastiness is strong)
   (then best-body is medium with certainty 40 and
   best-body is full with certainty 80))
- (rule (if preferred-body is full) (then best-body is full with certainty 40))
- (rule (if preferred-body is medium)
   (then best-body is medium with certainty 40))
- (rule (if preferred-body is light)
   (then best-body is light with certainty 40))

33



Charl Laboratoria in South and Addition of the

| WineDemo        |            |    |                |              |  |
|-----------------|------------|----|----------------|--------------|--|
| Preferences     |            |    | Meal           |              |  |
| Color:          | White      | •  | Main Cource:   | Don't Know 🔻 |  |
| Body:           | Medium     | •  | Sauce:         | Spicy 👻      |  |
| Sweetness:      | Don't Care | •] | Flavor:        | Don't Know 🔻 |  |
| Wine            |            |    | Recommendation | Weight       |  |
| Chardonnay      |            |    | 59%            |              |  |
| Geverztraminer  |            |    | 40%            |              |  |
| Riesling        |            |    | 36%            |              |  |
| Sauvignon Blanc |            |    | 20%            |              |  |
|                 |            |    |                |              |  |

## Case Based Reasoning

#### Case-Based Reasoning

- CBR is based on human information processing (HIP) model in some problem areas
- Law, diagnosis, strategic planning
- Human experts depend heavily on past experiences when solving new problems
- The principle is to find a solution which has been shown to solve problems like your current problem in the past, and adapt it so that it solves the current problem.

#### What is Case-based Reasoning?

- This has a certain psychological plausibility as a model of what the expertdecision-maker actually does when solving a problem.
- Based on research by Riesbeck & Schank (1989). A good comprehensive description is to be found in Kolodner (1993).
- Three quotes from Roger Schank:

- "Humans use cases because they don't know what they know they don't know their own rules - they do things non-reflectively."
- "The key process in intelligence is the reminding process".
- "People don't ever reason from first principles. They always choose a matching case. It may be a bad match, but in that case they need more experience."

## **CBR** Components

- A case-based ES consists of
  - a case base
  - ►a retriever
  - an adapter
  - ■a refiner
  - an executer
  - an evaluator

#### Case Base

- A case base functions as a repository of prior cases
- The cases are indexed so that they can be quickly recalled when necessary
- A case contains the general descriptions of old problems

## Retriever

- When a new problem is entered into a case based system, a retriever decides on the features similar to the stored cases.
- Retrieval is done by using features of the new cases as indexes into the case base.

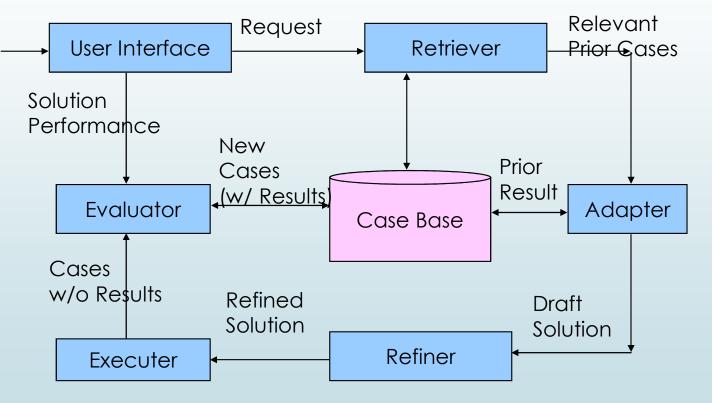
## Adapter

40

- An adapter examines the differences between these cases and the current problem
- It then applies rules to modify the old solution to fit the new problem

## Refiner

- A refiner critiques the adapted solution against prior outcomes
- One way to do this is to compare it to similar solutions of prior cases.
- If a known failure exists for a derived solution, the system then decides whether the similarities is sufficient to suspect that the new solution will fail


### Executer

Once a solution is critiqued, an executer applies the refined solution to the current problem.



If the results are as expected, no further analysis is made, and the cases and its solution is stored for use in future problem solving.

If not, the solution is repaired.



### Success Factors

- How much support is provided to end user?
- The ROI achieved
- Expansion of Knowledge Base
- The overall knowledge management

## Applications

44

- Intelligent Information Retrieval
- Case based Searching across WWW
- Technical Support
- Diagnosis
- Planning and Control
- Reasoning

#### A comparison between rulebased & case-based reasoning

| Criterion      | Rule-based reasoning | Case-based reasoning |
|----------------|----------------------|----------------------|
| Knowledge unit | Rule                 | Case                 |
| Granularity    | Fine                 | Coarse               |
| Knowledge      | Obtaining rules &    | Obtaining cases &    |
| acquisition    | hierarchies          | hierarchies          |

#### A comparison between rulebased & case-based reasoning

| Criterion             | Rule-based reasoning              | Case-based reasoning           |
|-----------------------|-----------------------------------|--------------------------------|
| Explanation mechanism | Backtrace of rules fired          | Precedent cases                |
| Characteristic output | Answer +<br>Confidence<br>measure | Answer +<br>precedent<br>cases |
| Knowledge<br>transfer | Potentially<br>high               | Low                            |

## A comparison between rulebased & case-based reasoning

| Criterion    | Rule-based reasoning         | Case-based reasoning      |
|--------------|------------------------------|---------------------------|
| Domain       | Domain                       | Domain                    |
| requirements | vocabulary,                  | vocabulary,               |
| /            | good set of inference rules, | Case base of example      |
|              | rules                        | cases,                    |
|              | which hold throughout        | stability: modified cases |
|              | domain                       | still hold                |
|              |                              |                           |

## **Advantages**

| Rule-based reasoning         | Case-based reasoning   |
|------------------------------|------------------------|
| Flexible use of knowledge,   | Rapid knowledge        |
| potentially optimal answers. | acquisition,           |
|                              | explanation by example |

# Disadvantages

| Rule-based reasoning       | Case-based reasoning         |
|----------------------------|------------------------------|
| Computationally expensive, | Suboptimal solutions,        |
| long development time,     | redundancy in knowledge base |
| impenetrable explanations  |                              |

## Summary

49

- Brief Introduction to Expert Systems
- Historical Systems MyCin, Eliza and Dendral
- Rule based system
  - Structure
  - Forward and Backward Chaining
- Case Base Reasoning
  - Structure
  - Comparison to Rule Based System
- CLIPS Demonstration